[1] VIANA J H M. Development of the world farm animal embryo industry over the past 30 years [J]. Theriogenology, 2024, 230: 151-156. [2] 孙克佳. 活体采卵与小群培养对牛羊体外胚胎生产的影响 [D].保定:河北农业大学 2022. SUN K J.The impact of ovum pick-up and small group culture on in vitro embryo production in cattle and sheep[D]. Baoding: Hebei Agricultural University, 2022.(in Chinese) [3] PRIEGO-GONZÁLEZ A, MUNOZ-MACEDA A, CERDEIRA-LOZANO J, et al. Successful ultrasound-guided ovum pick-up (OPU) and subsequent in vitro embryo production in a domestic cat [J]. Theriogenology, 2024, 229: 47-52. [4] DU Y, XIA Y, XU J, et al. Effects of donor age and reproductive history on developmental potential of ovum pickup oocytes in Japanese Black cattle (Wagyu) [J]. Theriogenology, 2024, 221: 25-30. [5] SIMMONS R, TUTT D A, GUVEN-ATES G, et al. Enhanced progesterone support during stimulated cycles of transvaginal follicular aspiration improves bovine in vitro embryo production [J]. Theriogenology, 2023, 199: 77-85. [6] WIECZOREK J, KOSENIUK J, SKRZYSZOWSKA M, et al. L-OPU in goat and sheep-different variants of the oocyte recovery method [J]. Animals (Basel), 2020, 10(4):658. [7] VEGA D A, NARVÁEZ H J. Oocyte quality in adapted Bos taurus taurus cows [J]. Anim Biotechnol, 2023, 34(9): 4675-4679. [8] GHAFARI F, SALAVATI M, PIERCY R J, et al. Beneficial effects of melatonin on canine oocyte nuclear maturation via reduction of oxidative stress [J]. Reproduction, 2025, 169(4):e240388. [9] MISHRA A, REDDY I J, GUPTA P S, et al. Expression of apoptotic and antioxidant enzyme genes in sheep oocytes and in vitro produced embryos [J]. Anim Biotechnol, 2017, 28(1): 18-25. [10] HUANG K, LI C, GAO F, et al. Epigallocatechin-3-gallate promotes the in vitro maturation and embryo development following IVF of porcine oocytes [J]. Drug Des Devel Ther, 2021, 15: 1013-1020. [11] MAHMOODI M, CHERAGHI E, RIAHI A. Correction to: The effect of wharton's jelly-derived conditioned medium on the in vitro maturation of immature oocytes, embryo development, and genes expression involved in apoptosis [J]. Reprod Sci, 2023, 30(11): 3400. [12] TANG Y, LU S, WEI J, et al. Growth differentiation factor 9 regulates the expression of estrogen receptors via Smad2/3 signaling in goat cumulus cells [J]. Theriogenology, 2024, 219: 65-74. [13] JIAO Y, JIANG T, LIN Q, et al. Molecular characterization of the follicular development of BMP15-edited pigs [J]. Reproduction, 2023, 166(4): 247-261. [14] NISHIO M, HOSHINO Y, SATO E. Effect of droplet size and number of oocytes examined on mouse oocyte quality in in vitro maturation [J]. J Mamm Ova Res, 2011, 28(1): 53-60. [15] EBRAHIMI M, MARA L, SUCCU S, et al. The effect of single versus group culture on cumulus-oocyte complexes from early antral follicles [J]. J Assist Reprod Genet, 2025, 42(3): 961-976. [16] GILCHRIST R B, LANE M, THOMPSON J G. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality [J]. Hum Reprod Update, 2008, 14(2): 159-177. [17] DU C, DAVIS J S, CHEN C, et al. FGF2/FGFR signaling promotes cumulus-oocyte complex maturation in vitro [J]. Reproduction, 2021, 161(2): 205-214. [18] MORIKAWA R, LEE J, MIYANO T. Effects of oocyte-derived growth factors on the growth of porcine oocytes and oocyte-cumulus cell complexes in vitro [J]. J Reprod Dev, 2021, 67(4): 273-281. [19] CHENG M, CHEN X, HAN M, et al. miR-155-5p improves oocyte maturation in porcine cumulus cells through connexin 43-mediated regulation of MPF activity [J]. Theriogenology, 2024, 214: 124-133. [20] STOCKER W A, WALTON K L, RICHANI D, et al. A variant of human growth differentiation factor-9 that improves oocyte developmental competence [J]. J Biol Chem, 2020, 295(23): 7981-7991. [21] FERRER-RODA M, PARAMIO M T, VILA-BELTRÁN J, et al. Effect of BMP15 and GDF9 in the IVM medium on subsequent oocyte competence and embryo development of prepubertal goats [J]. Theriogenology, 2025, 234: 164-173. [22] WANG L, GAO J, MA J, et al. Effects of hyperhomocysteinemia on follicular development and oocytes quality [J]. iScience, 2024, 27(11): 111241. [23] JIAO Y, BEI C, WANG Y, et al. Bone morphogenetic protein 15 gene disruption affects the in vitro maturation of porcine oocytes by impairing spindle assembly and organelle function [J]. Int J Biol Macromol, 2024, 267(Pt 1): 131417. [24] LI W, LIU Z, WANG P, et al. The transcription factor RUNX1 affects the maturation of porcine oocytes via the BMP15/TGF-β signaling pathway [J]. Int J Biol Macromol, 2023, 238: 124026. [25] GIUSTARINI D, MILZANI A, DALLE-DONNE I, et al. How to increase cellular glutathione [J]. Antioxidants (Basel), 2023, 12(5):1094. [26] ASHIBE S, MIYAMOTO R, KATO Y, et al. Detrimental effects of oxidative stress in bovine oocytes during intracytoplasmic sperm injection (ICSI) [J]. Theriogenology, 2019, 133: 71-78. [27] DAVOODIAN N, KADIVAR A, MEHRBAN H. Supplementation of media with gamma-oryzanol as a novel antioxidant to overcome redox imbalance during bovine oocyte maturation in vitro [J]. Reprod Domest Anim, 2024, 59(1): e14503. [28] KIM M J, KANG H G, JEON S B, et al. The antioxidant betulinic acid enhances porcine oocyte maturation through Nrf2/Keap1 signaling pathway modulation [J]. PLoS One, 2024, 19(10): e0311819. [29] READER K L, STANTON J L, JUENGEL J L. The role of oocyte organelles in determining developmental competence [J]. Biology (Basel), 2017, 6(3):35. [30] LI J, BALBOULA A Z, ABOELENAIN M, et al. Effect of autophagy induction and cathepsin B inhibition on developmental competence of poor quality bovine oocytes [J]. J Reprod Dev, 2020, 66(1): 83-91. [31] ROBERT C. Nurturing the egg: the essential connection between cumulus cells and the oocyte [J]. Reprod Fertil Dev, 2021, 34(2): 149-159. [32] YUAN Y, SPATE L D, REDEL B K, et al. Quadrupling efficiency in production of genetically modified pigs through improved oocyte maturation [J]. Proc Natl Acad Sci U S A, 2017, 114(29): E5796-E5804. [33] ZHANG M, ZHANG J, WANG D, et al. C-X-C motif chemokine ligand 12 improves the developmental potential of bovine oocytes by activating SH2 domain-containing tyrosine phosphatase 2 during maturation [J]. Biol Reprod, 2023, 109(3): 282-298. [34] MARTINEZ C A, CUELLO C, PARRILLA I, et al. Exogenous melatonin in the culture medium does not affect the development of in vivo-derived pig embryos but substantially improves the quality of in vitro-produced embryos [J]. Antioxidants (Basel), 2022, 11(6):1177. [35] TONG J, SHENG S, SUN Y, et al. Melatonin levels in follicular fluid as markers for IVF outcomes and predicting ovarian reserve [J]. Reproduction, 2017, 153(4): 443-451. [36] CADENAS J, PORS S E, KUMAR A, et al. Concentrations of oocyte secreted GDF9 and BMP15 decrease with MII transition during human IVM [J]. Reprod Biol Endocrinol, 2022, 20(1): 126. [37] TAWEECHAIPAISANKUL A, JIN JX, LEE S, et al. The effects of canthaxanthin on porcine oocyte maturation and embryo development in vitro after parthenogenetic activation and somatic cell nuclear transfer [J]. Reprod Domest Anim, 2016,51(6):870-876. [38] REN X, YUN X, YANG T, et al. Epifriedelanol delays the aging of porcine oocytes matured in vitro [J]. Toxicon, 2023,233:107256. [39] HUANG K, LI C, GAO F, et al. Epigallocatechin-3-Gallate promotes the in vitro maturation and embryo development following IVF of porcine oocytes [J]. Drug Des Devel Ther, 2021,15:1013-1020. [40] MASSOUD G, SPANN M, VAUGHT K C, et al. Biomarkers assessing the role of cumulus cells on IVF outcomes: a systematic review [J]. J Assist Reprod Genet, 2024, 41(2): 253-275. |