

Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (9): 4143-4155.doi: 10.11843/j.issn.0366-6964.2025.09.002
• Review • Previous Articles Next Articles
					
													YANG Mingying(
), WANG Na, LIU Yuanyi, LI Xinyu, Bayanamar , SHI Yujie, MANG Lai, DU Ming*(
)
												  
						
						
						
					
				
Received:2025-02-06
															
							
															
							
															
							
																	Online:2025-09-23
															
							
																	Published:2025-09-30
															
						Contact:
								DU Ming   
																	E-mail:2761337603@qq.com;duming@imau.edu.cn
																					CLC Number:
YANG Mingying, WANG Na, LIU Yuanyi, LI Xinyu, Bayanamar , SHI Yujie, MANG Lai, DU Ming. Research Progress on Vitrification Cryopreservation of Equine Oocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4143-4155.
Table 1
The history of cryopreservation of oocytes was traced for the first time abroad"
| 方法 Method  |  研究者 Investigator  |  年份 Year  |  物种 Species  |  成就 Event  |  参考文献 Reference  |  
| 慢速冷冻 Slow freezing  |  Whittingham | 1977 | 小鼠 | 首次保存卵母细胞获得后代 | [ |  
| Chen | 1986 | 人 | 保存卵母细胞获得后代 | [ |  |
| Al-Hasani等 | 1989 | 兔 | 保存卵母细胞获得后代 | [ |  |
| Didion等 | 1990 | 猪 | 成功保存卵母细胞 | [ |  |
| Fuku等 | 1992 | 牛 | 保存卵母细胞获得后代 | [ |  |
| Hochi等 | 1994 | 羊 | 成功保存卵母细胞 | [ |  |
| Canesin等 | 2020 | 马 | 成功保存卵母细胞 | [ |  |
| 玻璃化冷冻 Vitrification freezing  |  Al-Hasani等 | 1989 | 兔 | 成功保存卵母细胞 | [ |  
| Kono等 | 1991 | 小鼠 | 首次保存卵母细胞获得后代 | [ |  |
| Rubinsky等 | 1992 | 猪 | 成功保存卵母细胞 | [ |  |
| Hamano等 | 1992 | 牛 | 保存卵母细胞获得后代 | [ |  |
| Hochi等 | 1994 | 马 | 成功保存卵母细胞 | [ |  |
| Nagy等 | 2009 | 人 | 成功保存卵母细胞 | [ |  |
| Dattena等 | 2000 | 羊 | 保存卵母细胞获得后代 | [ |  
Table 2
The history of cryopreservation of horse oocytes"
| 研究者 Investigator  |  年份 Year  |  分裂阶段 Splitting stage  |  冷冻组合 Frozen combination  |  发育能力 Developmental capacity  |  参考文献 Reference  |  
| Hochi等 | 1994 | GV | 10% EG+10.0 mol·L-1 Sucrose | 成熟率15.8% | [ |  
| Maclellan等 | 2002 | MII | ED/EDFS,Three-step Sucrose | 存活率73% | [ |  
| Tharasanit等 | 2006 | GV | 10% EG+0.3 mol·L-1Sucrose | 成熟率35%,卵裂率8% | [ |  
| Tharasanit等 | 2006 | GV | 10% EG+10% DMSO | 卵裂率34%,囊胚率16% | [ |  
| MII | 20% EG+20% DMSO+0.3 mol·L-1Sucrose | 卵裂率27%,囊胚率4% | |||
| Maclellan等 | 2010 | MII | Commercial Cryotop medium | 卵裂率83%,囊胚率40%,妊娠率26% | [ |  
| Nowak等 | 2014 | MII | EquiPro-VitKit (Minitube) commercial medium  |  存活率63%,卵裂率10% | [ |  
| Canesin等 | 2021 | GV | FBS+PG+EG+T;30 s | 成熟率42%,卵裂率80%,囊胚率10% | [ |  
| De Coster等 | 2020 | GV | BS+PE 40%+0.3 mol·L-1Galactose | 成熟率41.2%,卵裂率65.5%,囊胚率9.4% | [ |  
| Ortiz-Escribano等 | 2018 | GV | HS+15% EG+15% DMSO+0.5 mol·L-1Sucrose | 成熟率25.3%,卵裂率30%,囊胚率5% | [ |  
| Canesin等 | 2018 | GV | EP/EPT | 成熟率21%,卵裂率85%,囊胚率15% | [ |  
Table 3
Developmental ability of vitrified horse oocytes using different carriers"
| 研究者 Author  |  分裂阶段 Splitting stage  |  试验组 Experimental group  |  载体 Carrier  |  存活率/% Survival rate  |  成熟率/% Maturity rate  |  卵裂率/% Cleavage rate  |  囊胚率/% Blastocyst rate  |  妊娠率/% Pregnancy rate  |  
| Maclellan等[ |  MII | 对照组 | Nylon | 100 | - | - | - | 83 | 
| ED/EDFS | 73 | - | - | - | 12 | |||
| Tharasanit等[ |  GV | 对照组 | OPS | 96 | 56 | 66 | 17 | - | 
| ED/EDS | 63 | 54 | 34 | 1 | - | |||
| MII | ED/EDS | 32 | 54 | 16 | 0 | - | ||
| Maclellan等[ |  MII | 商业Cryotop培养基 | Cryotop | 72 | 86 | 83 | 40 | 26 | 
| Canesin等[ |  GV | 对照组 | Stainless | - | 73 | 93 | 19 | - | 
| ED/EDS | Steel mesh | - | 36 | 67 | 11 | - | ||
| De Coster等[ |  GV | 对照组 | MVD | - | 58 | 76 | 20 | - | 
| ED/EDS | - | 48 | 30 | 0 | - | 
Table 4
Application of different freezing combinations in vitrified cryopreservation of horse oocytes"
| 作者 Author  |  分裂阶段 Splitting stage  |  载体 Carrier  |  平衡液VS1 Buffered solution  |  冷冻液VS2 Refrigerating fluid  |  解冻方案 Thawing solution  |  成熟率/% Maturity rate  |  卵裂率/% Cleavage rate  |  囊胚率/% Blastocyst rate  |  妊娠率/% Pregnancy rate  |  
| Canesin等[ |  GV | 不锈钢网 | 2%EG+2%PG+HM;40 s | 17.5%EG+17.5%PG+0.3 mol·L-1海藻糖;65 s | BM培养基一步解冻、标准逐步解冻 | 21 | 85 | 15 | - | 
| Agnieszka等[ |  MII | Rapid-Ⅰ | EquiPro VitKit;10 min | EquiPro VitKit;30 s | EquiPro VitKit培养基一步解冻 | - | 10.2 | 10 | - | 
| Maclellan等[ |  MII | Cryotop | 7.5%EG+7.5%DMSO+HM;1 min | 15%EG+15%DMSO+0.5 mol·L-1蔗糖+HM;1min | 标准逐步解冻 | - | 32 | 32 | - | 
| Ortiz-Escribano等[ |  GV | Cryotop | 10% EG+10%DMSO+HM;25 s | 20% EG+20%DMSO+0.3 mol·L-1蔗糖;15 s | 标准逐步解冻 | 34 | 42 | 7 | 20 | 
| Angel等[ |  GV | 尼龙网 | FBS/7.5%PG-7.5%EG;10 min | 15%PG-15%EG;30 s | 标准逐步解冻 | 42 | 80 | 10 | - | 
| Clérico等[ |  GV | Cryotop | 5% EG+5% DMSO;45 s | 20% EG+20% DMSO+0.65 mol·L-1;30 s | 标准逐步解冻 | 54 | 46 | 9 | 33 | 
| Ducheyne等[ |  GV | 接种环 | 20% EG+20% DMSO+BS;25 s | 10% EG+10% DMSO+0.5 mol·L-1蔗糖;15 s | 标准逐步解冻 | 33 | - | - | - | 
| Tharasanit等[ |  GV | OPS | 10% EG+10%DMSO+HM;30 s | 20% EG+20% DMSO+0.5 mol·L-1;5 s | 0.3 mol·L-1蔗糖一步解冻法 | 54 | 34 | 1 | - | 
| Tharasanit等[ |  MII | OPS | 10% EG+10% DMSO+HM;30 s | 20% EG+20% DMSO+0.5 mol·L-1;15 s | 0.3 mol·L-1蔗糖一步解冻法 | - | 16 | - | - | 
Table 5
Application of new cryoprotectant in other animals"
| 类别 Category  |  物种 Species  |  浓度 Concentration  |  成果 Outcome  |  参考文献 Reference  |  |
| 抗氧化剂 Antioxidant  |  原花青素 B2(PB2) | 水牛 | 10-9 mol·L-1 | PB2改善水牛卵母细胞的发育能力和线粒体分布 | [ |  
| 小鼠 | 5 μg·mL-1 | PB2改善线粒体功能、提高囊胚率 | [ |  ||
| 白藜芦醇(Res) | 牛 | 2 μmol·L-1 | Res恢复DNA甲基化水平并显著改善玻璃化GV卵母细胞的成熟和发育能力 | [ |  |
| 小鼠 | 0.1 μmol·L-1 | Res修复玻璃化后胚胎的异常线粒体分布和线粒体功能障碍 | [ |  ||
| 褪黑素(MT) | 绵羊 | 1 μmol·L-1 | MT降低活性氧水平并促进胚胎抗氧化酶(如谷胱甘肽)的产生 | [ |  |
| 马 | 10 mmol·L-1 | MT降低线粒体相关的ROS和改善ICSI胚胎发育,卵裂率从45%提高至60%,囊胚率也从8%提升至14% | [ |  ||
| 虾青素(Ax) | 牛 | 5.3 μmol·L-1 | Ax减少氧化应激改善囊胚质量 | [ |  |
| 猪 | 2.5 μmol·L-1 | Ax恢复玻璃化卵母细胞基因表达提高mRNA水平 | [ |  ||
| 细胞骨架稳定剂 Cytoskeleton stabilizer  |  紫杉醇(Taxol) | 牛 | 1 μmol·L-1 | 添加Taxol后线粒体分布正常率40%显著高于对照组22% | [ |  
| 猪 | 10 mol·L-1 | 添加Taxol后玻璃化线粒体分布正常率83.69%显著高于对照组48.5% | [ |  ||
| 细胞松弛素B(CB) | 猪 | 7.5 μg·mL-1 | 添加CB使卵母细胞卵裂率5.64%提高至20.91%,囊胚率由0.41%提高至5.00% | [ |  |
| 绵羊 | 7.5 μg·mL-1 | CB玻璃化组的受精率高于未添加CB组(57.0%vs40.7%)并提升胚胎质量 | [ |  
| 1 |  
											  CASILLAS F ,  BETANCOURT M .  The porcine experimental model for oocyte cryopreservation by vitrification[J]. AJBSR, 2020, 9 (2): 165- 169. 
																							 doi: 10.34297/AJBSR.2020.09.001377  | 
										
| 2 |  
											  BOGLIOLO L ,  LEDDA S ,  INNOCENZI P , et al.  Raman microspectroscopy as a non-invasive tool to assess the vitrification-induced changes of ovine oocyte zona pellucida[J]. Cryobiology, 2012, 64 (3): 267- 272. 
																							 doi: 10.1016/j.cryobiol.2012.02.010  | 
										
| 3 |  
											  MARTEIL G ,  METCHAT A ,  DOLLET S , et al.  Vitrification of human oocytes before or after Rescue-IVM does not impair maturation kinetics but induces meiotic spindle alterations[J]. Reprod Sci, 2024, 31 (9): 2625- 2636. 
																							 doi: 10.1007/s43032-024-01596-7  | 
										
| 4 |  
											  SUN H ,  GUO Y ,  YU R , et al.  Ru360 protects against vitrification-induced oocyte meiotic defects by restoring mitochondrial function[J]. Theriogenology, 2023, 204, 40- 49. 
																							 doi: 10.1016/j.theriogenology.2023.04.004  | 
										
| 5 |  
											  ZHANG C ,  ZHAO M ,  XUE Y , et al.  Effects of vitrification on mitochondrial ultrastructure and membrane potential and its distribution in mouse oocytes[J]. Cryo Lett, 2024, 45 (5): 301- 308. 
																							 doi: 10.54680/fr24510110212  | 
										
| 6 |  
											  PEREIRA B C ,  ORTIZ I ,  DORADO J , et al.  Evaluation of DNA damage of mare granulosa cells before and after cryopreservation using a chromatin dispersion test[J]. J Equine Vet Sci, 2019, 72, 28- 30. 
																							 doi: 10.1016/j.jevs.2018.10.019  | 
										
| 7 |  
											  ORTIZ-ESCRIBANO N ,  BOGADO PASCOTTINI O ,  WOELDERS H , et al.  An improved vitrification protocol for equine immature oocytes, resulting in a first live foal[J]. Equine Vet J, 2018, 50 (3): 391- 397. 
																							 doi: 10.1111/evj.12747  | 
										
| 8 |  
											  WHITTINGHAM D G .  Fertilization in vitro and development to term of unfertilized mouse oocytes previously stored at -196 degrees C[J]. J Reprod Fertil, 1977, 49 (1): 89- 94. 
																							 doi: 10.1530/jrf.0.0490089  | 
										
| 9 |  
											  FUKU E ,  KOJIMA T ,  SHIOYA Y , et al.  In vitro fertilization and development of frozen-thawed bovine oocytes[J]. Cryobiology, 1992, 29 (4): 485- 492. 
																							 doi: 10.1016/0011-2240(92)90051-3  | 
										
| 10 |  
											  LE GAL F .  In vitro maturation and fertilization of goat oocytes frozen at the germinal vesicle stage[J]. Theriogenology, 1996, 45 (6): 1177- 1185. 
																							 doi: 10.1016/0093-691X(96)00073-8  | 
										
| 11 |  
											  DIDION B A ,  POMP D ,  MARTIN M J , et al.  Observations on the cooling and cryopreservation of pig oocytes at the germinal vesicle stage[J]. J Anim Sci, 1990, 68 (9): 2803- 2810. 
																							 doi: 10.2527/1990.6892803x  | 
										
| 12 |  
											  RALL W F ,  FAHY G M .  Ice-free cryopreservation of mouse embryos at -196℃ by vitrification[J].  Nature, 1985, 313 (6003): 573- 575. 
																							 doi: 10.1038/313573a0  | 
										
| 13 |  
											  NAKAGATA N .  High survival rate of unfertilized mouse oocytes after vitrification[J]. J Reprod Fertil, 1989, 87 (2): 479- 483. 
																							 doi: 10.1530/jrf.0.0870479  | 
										
| 14 |  
											  HOCHI S ,  FUJIMOTO T ,  CHOI Y H , et al.  Cryopreservation of equine oocytes by 2-step freezing[J]. Theriogenology, 1994, 42 (7): 1085- 1094. 
																							 doi: 10.1016/0093-691X(94)90856-7  | 
										
| 15 |  
											  MACLELLAN L J ,  CARNEVALE E M ,  COUTINHO DA SILVA M A , et al.  Pregnancies from vitrified equine oocytes collected from super-stimulated and non-stimulated mares[J]. Theriogenology, 2002, 58 (5): 911- 999. 
																							 doi: 10.1016/S0093-691X(02)00920-2  | 
										
| 16 | CANESIN H S , BROM-DE-LUNA , J G , CHOI Y H , et al. Blastocyst development after intracytoplasmic sperm injection of equine oocytes vitrified at the germinal-vesicle stage[J]. Cryobiology, 2021, 75, 52- 59. | 
| 17 |  
											  CLÉRICO G ,  TAMINELLI G ,  VERONESI J C , et al.  Mitochondrial function, blastocyst development and live foals born after ICSI of immature vitrified/warmed equine oocytes matured with or without melatonin[J]. Theriogenology, 2021, 160, 40- 49. 
																							 doi: 10.1016/j.theriogenology.2020.10.036  | 
										
| 18 | CHEN C . Pregnancy after human oocyte cryo-preservation[J]. Lancet, 1986, 1 (8486): 884- 886. | 
| 19 |  
											  AL-HASANI S ,  KIRSCH J ,  DIEDRICH K , et al.  Successful embryo transfer of cryopreserved and in-vitro fertilized rabbit oocytes[J]. Hum Reprod, 1989, 4 (1): 77- 79. 
																							 doi: 10.1093/oxfordjournals.humrep.a136849  | 
										
| 20 |  
											  CANESIN H S ,  ORTIZ I ,  ROCHA FILHO A N , et al.  Effect of warming method on embryo quality in a simplified equine embryo vitrification system[J]. Theriogenology, 2020, 151, 151- 158. 
																							 doi: 10.1016/j.theriogenology.2020.03.012  | 
										
| 21 |  
											  AI-HASANI S ,  KIRSCH J ,  DIEDRICH K , et al.  Successcul embryo transfer of cryopreserved and in-vitro fertilized rabbit oocytes[J]. Hum Reprod, 1989, 4 (1): 77- 79. 
																							 doi: 10.1093/oxfordjournals.humrep.a136849  | 
										
| 22 | KONO T , KWON O Y , NAKAHARA T . Development of enucleated mouse oocytes reconstituted with embryonic nuclei[J]. J Reprod Fertil, 1991, 93, 154- 172. | 
| 23 |  
											  RUBINSKY B ,  ARAV A ,  DEVRIES A L .  The cryoprotective effect of antifreeze glycopeptides from Antarctic fishes[J]. Cryobiology, 1992, 29 (1): 69- 79. 
																							 doi: 10.1016/0011-2240(92)90006-N  | 
										
| 24 |  
											  HAMANO S ,  KOIKEDA A ,  KUWAYAMA M , et al.  Full-term development of in vitro-matured, vitrified and fertilized bovine oocytes[J]. Theriogenology, 1992, 38 (6): 1085- 1090. 
																							 doi: 10.1016/0093-691X(92)90122-8  | 
										
| 25 |  
											  NAGY Z P ,  CHANG C C ,  SHAPIRO D B , et al.  Clinical evaluation of the efficiency of an oocytedonation program using egg cryo-banking[J]. Fert Ster, 2009, 92 (2): 520- 526. 
																							 doi: 10.1016/j.fertnstert.2008.06.005  | 
										
| 26 |  
											  DATTENA M ,  PTAK G ,  LOI P , et al.  Survival and viability of vitrified in vitro and in vivo produced ovine blastocysts[J]. Theriogenology, 2000, 53 (8): 1511- 1519. 
																							 doi: 10.1016/S0093-691X(00)00293-4  | 
										
| 27 |  
											  THARASANIT T ,  COLENBRANDER B ,  STOUT T A .  Effect of maturation stage at cryopreservation on post-thaw cytoskeleton quality and fertilizability of equine oocytes[J]. Mol Reprod Dev, 2006, 73 (5): 627- 637. 
																							 doi: 10.1002/mrd.20432  | 
										
| 28 |  
											  THARASANIT T ,  COLLEONI S ,  LAZZARI G , et al.  Effect of cumulus morphology and maturation stage on the cryopreservability of equine oocytes[J]. Reproduction, 2006, 132 (5): 759- 769. 
																							 doi: 10.1530/rep.1.01156  | 
										
| 29 | MACLELLAN L J , STOKES J E , PREIS K A , et al. Vitrification, warming, ICSI and transfer of equine oocytes matured invivo[J]. Anim Reprod Sci, 2010, 121, 5260- 5261. | 
| 30 |  
											  NOWAK A ,  KOCHAN J ,  PAPIS K , et al.  Studies on survival of horse oocytes after Rapid-i method vitrification[J]. J Equ Vet Sci, 2014, 34 (5): 675- 679. 
																							 doi: 10.1016/j.jevs.2013.12.013  | 
										
| 31 |  
											  DE COSTER T ,  VELEZ D A ,  VAN SOOM A , et al.  Cryopreservation of equine oocytes: looking into the crystal ball[J]. Reprod Fertil Dev, 2020, 32 (5): 453- 467. 
																							 doi: 10.1071/RD19229  | 
										
| 32 |  
											  CANESIN H S ,  BROM-DE-LUNA J G ,  CHOI Y H , et al.  Vitrification of germinal-vesicle stage equine oocytes: Effect of cryoprotectant exposure time on in-vitro embryo production[J].  Cryobiology, 2018, 81, 185- 191. 
																							 doi: 10.1016/j.cryobiol.2018.01.001  | 
										
| 33 |  
											  DUCHEYNE K D ,  RIZZO M ,  DAELS P F , et al.  Vitrifying immature equine oocytes impairs their ability to correctly align the chromosomes on the MⅡ spindle[J]. Reprod Fertil Dev, 2019, 31 (8): 1330- 1338. 
																							 doi: 10.1071/RD18276  | 
										
| 34 | PEREIRA B C , ORTIZ I , DORADO J M , et a . Effect of permeable cryoprotectant-free vitrification on DNA fragmentation of equine oocyte-cumulus cells[J]. Reprod Domest Anim, 2019, 54 (Suppl 3): 53- 56. | 
| 35 |  
											  LÓPEZ A ,  DUCOLOMB Y ,  CASAS E , et al.  Effects of porcine immature oocyte vitrification on actin microfilament distribution and chromatin integrity during early embryo development in vitro[J]. Front Cell Dev Biol, 2021, 9, 636765. 
																							 doi: 10.3389/fcell.2021.636765  | 
										
| 36 |  
											  MACLELLAN L J ,  ALBERTINI DF ,  STOKES J E , et al.  Use of confocal microscopy and intracytoplasmic sperm injection (ICSI) to assess viability of equine oocytes from young and old mares after vitrification[J]. J Assist Reprod Genet, 2023, 40 (11): 2565- 2576. 
																							 doi: 10.1007/s10815-023-02935-4  | 
										
| 37 | YURCHUK T , LIKSZO P , WITEK K , et al. New approach to the cryopreservation of GV oocytes and cumulus cells through the lens of preserving the intercellular gap junctions based on the bovine model[J]. Int J Mol Sc, 2024, 25 (11): 60- 74. | 
| 38 |  
											  THARASANIT T ,  COLLEONI S ,  GALLI C , et al.  Protective effects of the cumulus-corona radiata complex during vitrification of horse oocytes[J]. Reproduction, 2009, 137 (3): 391- 401. 
																							 doi: 10.1530/REP-08-0333  | 
										
| 39 |  
											  GOOK D A ,  OSBORN S M ,  JOHNSTON W , et al.  Cryopreservation of mouse and human oocytes using 1, 2-propanediol and the configuration of the meiotic spindle[J]. Hum Reprod, 1993, 8 (7): 1101- 1109. 
																							 doi: 10.1093/oxfordjournals.humrep.a138201  | 
										
| 40 |  
											  VINCENT C ,  PICKERING S J ,  JOHNSON M H , et al.  The hardening effect of dimethylsulphoxide on the mouse zona pellucida requires the presence of an oocyte and is associated with a reduction in the number of cortical granules present[J]. J Reprod Fertil, 1990, 89 (1): 253- 259. 
																							 doi: 10.1530/jrf.0.0890253  | 
										
| 41 |  
											  LARMAN M G ,  SHEEHAN C B ,  GARDNER D K , et al.  Calcium-free vitrification reduces cryoprotectant-induced zona pellucida hardening and increases fertilization rates in mouse oocytes[J]. Reproduction, 2006, 131 (1): 53- 61. 
																							 doi: 10.1530/rep.1.00878  | 
										
| 42 |  
											  CHOI J K ,  YUE T ,  HUANG H , et al.  The crucial role of zona pellucida in cryopreservation of oocytes by vitrification[J]. Cryobiology, 2015, 71 (2): 350- 355. 
																							 doi: 10.1016/j.cryobiol.2015.08.012  | 
										
| 43 | DUMOLLARD R , DUCHEN M , CARROLL J . The role of mitochondrial function in the oocyte and embryo[J]. Curr Top Dev Biol, 2007, 77, 21- 49. | 
| 44 |  
											  ZHANG C ,  ZHAO M ,  XUE Y , et al.  Effects of vitrification on mitochondrial ultrastructure and membrane potential and its distribution in mouse oocytes[J]. Cryo Letters, 2024, 45 (5): 301- 308. 
																							 doi: 10.54680/fr24510110212  | 
										
| 45 |  
											  MA Y ,  LONG C ,  LIU G , et al.  WGBS combined with RNA-seq analysis revealed that Dnmt1 affects the methylation modification and gene expression changes during mouse oocyte vitrification[J]. Theriogenology, 2022, 177, 11- 21. 
																							 doi: 10.1016/j.theriogenology.2021.09.032  | 
										
| 46 |  
											  CHEN H ,  ZHANG L ,  DENG T , et al.  Effects of oocyte vitrification on epigenetic status in early bovine embryos[J]. Theriogenology, 2016, 86 (3): 868- 878. 
																							 doi: 10.1016/j.theriogenology.2016.03.008  | 
										
| 47 |  
											 孙雅雯, 陈思颍, 李伉, 等.  猪卵母细胞玻璃化冷冻损伤的缓解策略[J]. 畜牧兽医学报, 2025, 56 (1): 36- 44. 
																							 doi: 10.11843/j.issn.0366-6964.2025.01.004  | 
										
|  
											  SUN Y W ,  CHEN S Y ,  LI K , et al.  Strategies for alleviating cryoinjury of porcine vitrified-oocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56 (1): 36- 44. 
																							 doi: 10.11843/j.issn.0366-6964.2025.01.004  | 
										|
| 48 | 贾宝瑜. 共轭亚油酸对猪卵母细胞体外成熟、胚胎培养和冷冻保存的作用机制[D]. 北京: 中国农业大学, 2014. | 
| JIA B Y. Effects of t10c12 CLA on oocyte in vitro maturation, embryo development and cryopreservation in pig[D]. Beijing: China Agricultural University, 2014. (in Chinese) | |
| 49 | WALTER J , COLLEONI S , LAZZARI G , et al. Maturational competence of equine oocytes is associated with alterations in their 'cumulome'[J]. Mol Hum Reprod, 2024, 30 (9): 33. | 
| 50 |  
											  TORNER H ,  ALM H ,  KANITZ W , et al.  Effect of initial cumulus morphology on meiotic dynamic and status of mitochondria in horse oocytes during IVM[J]. Reprod Domest Anim, 2007, 42 (2): 176- 183. 
																							 doi: 10.1111/j.1439-0531.2006.00749.x  | 
										
| 51 |  
											  ANGEL D ,  CANESIN H S ,  BROM-DE-LUNA J G , et al.  Embryo development after vitrification of immature and in vitro-matured equine oocytes[J]. Cryobiology, 2020, 92, 251- 254. 
																							 doi: 10.1016/j.cryobiol.2020.01.014  | 
										
| 52 |  
											  KUWAYAMA M .  Highly efficient vitrification for cryopreservation of human oocytes and embryos: The Cryotop method[J]. Theriogenology, 2007, 67 (1): 73- 80. 
																							 doi: 10.1016/j.theriogenology.2006.09.014  | 
										
| 53 |  
											  SANSINENA M ,  SANTOS M V ,  ZARITZKY N , et al.  Numerical simulation of cooling rates in vitrification systems used for oocyte cryopreservation[J].  Cryobiology, 2011, 63 (1): 32- 37. 
																							 doi: 10.1016/j.cryobiol.2011.04.006  | 
										
| 54 |  
											 陈思颍, 孙雅雯, 李伉, 等.  微流体技术在家畜体外胚胎生产中的应用进展[J]. 畜牧兽医学报, 2023, 54 (12): 4889- 4897. 
																							 doi: 10.11843/j.issn.0366-6964.2023.12.001  | 
										
|  
											  CHEN S Y ,  SUN Y W ,  LI K , et al.  Application of microfluidic technologies in livestock in vitro embryo production[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (12): 4889- 4897. 
																							 doi: 10.11843/j.issn.0366-6964.2023.12.001  | 
										|
| 55 | LI Y , ZHANG J , HAN W , et al. Multifunctional laser-induced graphene-based microfluidic chip for high-performance oocyte cryopreservation with low concentration of cryoprotectants[J]. Adv Healthc Mater, 2024, 13 (23): e2400981. | 
| 56 |  
											  LEI Z ,  XIE D ,  MBOGBA M K , et al.  A microfluidic platform with cell-scale precise temperature control for simultaneous investigation of the osmotic responses of multiple oocytes[J]. Lab Chip, 2019, 19 (11): 1929- 1940. 
																							 doi: 10.1039/C9LC00107G  | 
										
| 57 | ZHOU X L , GUO Y Y , YI X Y , et al. Experimental study of microfluidic chip for cryopreservation of oocytes[J]. Prog Biochem Biophys, 2018, 45 (7): 763- 771. | 
| 58 |  
											  AGNIESZKA N ,  JOANNA K ,  WOJCIECH W , et al.  In vitro maturation of equine oocytes followed by two vitrification protocols and subjected to either intracytoplasmic sperm injection (ICSI) or parthenogenic activation[J]. Theriogenology, 2021, 162, 42- 48. 
																							 doi: 10.1016/j.theriogenology.2020.12.022  | 
										
| 59 |  
											  SOMFAI T ,  DANG-NGUYEN T Q ,  KIKUCHI K .  Altered microfilament dynamics contribute to the formation of diploid metaphase spindles in porcine oocytes which fail to reach the metaphase-Ⅱ stage during in vitro maturation[J]. Anim Sci J, 2022, 93 (1): e13690. 
																							 doi: 10.1111/asj.13690  | 
										
| 60 |  
											  TONE M ,  UKYO R ,  SAKAMOTO S H , et al.  Effects of paclitaxel before vitrification on the nuclear maturation and development of immature porcine oocytes[J]. Cryo Lett, 2023, 44 (5): 307- 313. 
																							 doi: 10.54680/fr23510110812  | 
										
| 61 | 董胤余, 王勇杰, 刘可可, 等. 抗冷冻蛋白Ⅲ对玻璃化冷冻猪GV期卵母细胞及其DNA的保护作用[J]. 中国兽医科学, 2023, 53 (5): 658- 663. | 
| DONG Y Y , WANG Y J , LIU K K , et al. Protection of antifreeze protein Ⅲ on vitrified GV oocytes and its dna of porcine[J]. Chinese Veterinary Science, 2023, 53 (5): 658- 663. | |
| 62 |  
											  CHEEPA F F ,  LIU H ,  ZHAO G .  The Natural cryoprotectant honey for fertility cryopreservation[J]. Bioengineering (Basel), 2022, 9 (3): 88. 
																							 doi: 10.3390/bioengineering9030088  | 
										
| 63 |  
											  ISHII M ,  KAMOSHITA M ,  KURIHARA Y , et al.  Successful production of offspring derived from mouse zygotes vitrified with carboxylated ε-poly-L-lysine and polyvinyl alcohol without serum[J]. J Reprod Dev, 2023, 69 (1): 53- 55. 
																							 doi: 10.1262/jrd.2022-121  | 
										
| 64 | SCHWARZ K R L , DE CASTRO F C , SCHEFER L , et al. The role of cGMP as a mediator of lipolysis in bovine oocytes and its effects on embryo development and cryopreservation[J]. PLoS One, 2018, 13 (6): e0191023. | 
| 65 | ZHUAN Q , LI J , DU X , et al. Antioxidant procyanidin B2 protects oocytes against cryoinjuries via mitochondria regulated cortical tension[J]. J Anim Sci Biotechnol, 2022, 16, 13. | 
| 66 |  
											  DU X ,  LI J ,  ZHUAN Q , et al.  Artificially increasing cortical tension improves mouse oocytes development by attenuating meiotic defects during vitrification[J]. Front Cell Dev Biol, 2022, 10, 876259. 
																							 doi: 10.3389/fcell.2022.876259  | 
										
| 67 |  
											  ZHANG P ,  YANG S ,  ZHANG H , et al.  Vitrification of bovine germinal vesicle oocytes significantly decreased the methylation level of their in vitro derived MⅡ oocytes[J]. Reprod Fertil Dev, 2022, 34 (13): 889- 903. 
																							 doi: 10.1071/RD22130  | 
										
| 68 |  
											  IWATA H .  Resveratrol enhanced mitochondrial recovery from cryopreservation-induced damages in oocytes and embryos[J]. Reprod Med Biol, 2021, 20 (4): 419- 426. 
																							 doi: 10.1002/rmb2.12401  | 
										
| 69 |  
											  BARROS V R P ,  MONTE A P O ,  SANTOS J M S , et al.  Melatonin improves development, mitochondrial function and promotes the meiotic resumption of sheep oocytes from in vitro grown secondary follicles[J]. Theriogenology, 2020, 144, 67- 73. 
																							 doi: 10.1016/j.theriogenology.2019.12.006  | 
										
| 70 |  
											  DUJÍČKOVÁ  L ,  OLEXIKOVÁ L ,  MAKAREVICH A V , et al.  Astaxanthin added during post-warm recovery mitigated oxidative stress in bovine vitrified oocytes and improved quality of resulting blastocysts[J]. Antioxidants (Basel), 2024, 13 (5): 556. 
																							 doi: 10.3390/antiox13050556  | 
										
| 71 |  
											  XIANG D C ,  JIA B Y ,  FU X W , et al.  Role of astaxanthin as an efficient antioxidant on the in vitro maturation and vitrification of porcine oocytes[J]. Theriogenology, 2021, 167, 13- 23. 
																							 doi: 10.1016/j.theriogenology.2021.03.006  | 
										
| 72 |  
											  MORATÓ R ,  IZQUIERDO D ,  ALBARRACÍN J L , et al.  Effects of pre-treating in vitro-matured bovine oocytes with the cytoskeleton stabilizing agent taxol prior to vitrification[J]. Mol Reprod Dev, 2008, 75 (1): 191- 201. 
																							 doi: 10.1002/mrd.20725  | 
										
| 73 |  
											 李婉君, 徐皆欢, 何孟纤, 等.  细胞松弛素B改善冷冻引起的猪卵母细胞皮质颗粒迁移障碍[J]. 畜牧兽医学报, 2024, 55 (5): 1999- 2010. 
																							 doi: 10.11843/j.issn.0366-6964.2024.05.018  | 
										
|  
											  LI W J ,  XU J H ,  HE M Q , et al.  Cytochalasin B alleviates the migration disorder of cortical particle caused by vitrification in porcine oocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (5): 1999- 2010. 
																							 doi: 10.11843/j.issn.0366-6964.2024.05.018  | 
										|
| 74 | MOAWAD A R , ZHU J , CHOI I , et al. Effect of Cytochalasin B pretreatment on developmental potential of ovine oocytes vitrified at the germinal vesicle stage[J]. Cryo Lett, 2013, 34 (6): 634- 644. | 
| 75 |  
											  DU M ,  LI X Y ,  BAYINNAMULA , et al.  Optimization of vitrification methods for equine oocytes[J]. Tissue Cell, 2024, 91, 102632. 
																							 doi: 10.1016/j.tice.2024.102632  | 
										
| [1] | TANG Yu, ZHANG Ying, YANG Yifeng, XUE Hailong, LIU Lixiang, XU Baozeng. Mechanisms of Glycine Improving Vitrification Cryopreservation Efficiency of Mink Oocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3265-3277. | 
| [2] | GUO Yanyan, ZHANG Yuxin, LU Rui, LI Yupeng, CHEN Longbin, ZHANG Jinlong, YAO Dawei, RUAN Weibin, ZHANG Xiaosheng, GUO Xiaofei. Research Progress on the Proliferation and Differentiation of Granulosa Cells at Various Follicular Development Stages in Mammal [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1484-1493. | 
| [3] | YAN Rui, JIA Chaoyang, MA Jing, YANG Juan, LIU Xinfeng, CHEN Qiang. The Research Status and Application Prospect of 3D Culture in Livestock Oocytes and Embryos Culture [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1494-1507. | 
| [4] | SUN Yawen, CHEN Siying, LI Kang, LENG Xuan, WANG Dong, PANG Yunwei. Strategies for Alleviating Cryoinjury of Porcine Vitrified-Oocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 36-44. | 
| [5] | YANG Baigao, XU Jiehuan, ZHANG Liang, LONG Xi, DAI Jianjun, ZHAO Xueming, PAN Hongmei. Exploring the Effect of Vitrification on Genome Methylation Level of Porcine Parthenogenetic Activation Blastocysts by scWGBS [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 222-231. | 
| [6] | Baigao YANG, Xi LONG, Liang ZHANG, Jiehuan XU, Jianjun DAI, Xueming ZHAO, Hongmei PAN. Exploring the Effect of Vitrification on Gene Expression in Porcine Parthenogenetic Blastocysts by Smart-seq2 [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3936-3946. | 
| [7] | LI Wanjun, XU Jiehuan, HE Mengxian, KONG Yuting, ZHANG Defu, DAI Jianjun. Cytochalasin B Alleviates the Migration Disorder of Cortical Particle Caused by Vitrification in Porcine Oocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1999-2010. | 
| [8] | WU Zihao, CAI Yilong, TUO Haixin, CHEN Wei. Pathogenicity Analysis of a PVL+ ST22 Staphylococcus aureus Isolated from Equine Raw Milk [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 718-726. | 
| [9] | Jianhua DONG, Xiaoyi FENG, Baigao YANG, Chongyang LI, Hongmei PAN, Lihua LÜ, Xueming ZHAO. Advances in Cryopreservation of Porcine Embryo [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 4796-4807. | 
| [10] | SHEN Yingchao, DAVSHILT Toli, REN Hong, WANG Xisheng, TIAN Shuyue, DU Ming, DUGARJAVIIN Manglai, BOU Gerelchimeg. Differential Expression of Oocyte Development-related Hormone and Growth Factor Receptors in Equine Expanded and Compact Cumulus-oocyte Complexes [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3735-3744. | 
| [11] | XU Xi, YANG Baigao, ZHANG Hang, FENG Xiaoyi, HAO Haisheng, DU Weihua, ZHU Huabin, ZHANG Peipei, ZHAO Xueming. Effects of NMN on Lipid Droplet Content and Cryopreservation Effect of Bovine Oocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3348-3357. | 
| [12] | YANG Sha, YANG Yuze, XU Xi, HAO Haisheng, DU Weihua, PANG Yunwei, ZHAO Shanjiang, ZOU Huiying, ZHU Huabin, ZHAO Xueming. The Regulation of Methylation Level of IGF2R Gene in IVF Blastocysts Derived from Vitrified Bovine Oocytes by dCas9-SunTag-DNMT3A Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(6): 2015-2023. | 
| [13] | SUN Huan, SUN Kejia, JIANG Xiaolong, LIU Aiju, MA Xiaofei, HAN Hongye, YAO Dawei, MA Yi, TIAN Shujun. Effect of Deoxynivalenol(DON) on Maturation and Development of Bovine Oocytes in vitro [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(9): 2475-2483. | 
| [14] | SHEN Yingchao, REN Hong, NARIGA, WANG Xisheng, MANG Lai, BOU Gerelchimeg. Research Progress of In Vitro Maturation in Horse Oocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(5): 914-922. | 
| [15] | ZHANG Peipei, WANG Jingjing, HAO Haisheng, DU Weihua, PANG Yunwei, QUAN Guobo, ZHAO Shanjiang, ZOU Huiying, HAO Tong, ZHU Huabin, ZHAO Xueming. Study on Whole Genome Methylation Pattern in Vitrified Bovine GV Oocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(5): 1030-1039. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||