Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (5): 2481-2495.doi: 10.11843/j.issn.0366-6964.2025.05.043
• Clinical Veterinary Medicine • Previous Articles Next Articles
ZHAO Ying1(), WANG Jinglei1, WANG Meng1, WANG Libin1,2, ZHANG Qian1, LI Zhijie1, MA Xin1, YU Sijiu1,2, PAN Yangyang1,2,*(
)
Received:
2024-07-03
Online:
2025-05-23
Published:
2025-05-27
Contact:
PAN Yangyang
E-mail:1660743533@qq.com;panyangyang_2007@126.com
CLC Number:
ZHAO Ying, WANG Jinglei, WANG Meng, WANG Libin, ZHANG Qian, LI Zhijie, MA Xin, YU Sijiu, PAN Yangyang. Preparation and Characterization of Forsythiaside A and Kaempferol Encapsulated in Milk-derived Exosomes and Evaluation of Anti-inflammatory Effects in vitro[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2481-2495.
Table 1
RT-qPCR primer sequences of inflammatory factors of interest"
引物 Primer | 引物序列(5′→3′) Primer sequence |
IL-6-F | TGGGGCTGCTCCTGGT |
IL-6-R | TCTCACATATCTCCTTTCTCATTG |
IL-8-F | ATTCCACACCTTTCCACCC |
IL-8-R | TGGGGTTTAAGCAGACCTCG |
TNFα-F | GATGTGGAGCTGGCGGAG |
TNFα-R | AGGGCTGTTGATGGAGGG |
GAPDH-F | TATGACCACCGTCCACGCCATC |
GAPDH-R | CGCCTGCTTCACCACCTTCTTG |
Table 2
Scratch values were measured and scratch change values were calculated in the control group, miEVs group, FTA group and FTA-miEVs group"
组别 Constituencies | 划痕值 Scratch value | 划痕变化值 Scratch change value | 迁移抑制率/% Migration inhibition rate |
对照组0 h Control group 0 h | 68 027 | ||
miEVs组0 h miEVs group 0 h | 44 880 | ||
FTA组0 h FTA group 0 h | 60 903 | ||
FTA-miEVs组0 h FTA-miEVs group 0 h | 69 474 | ||
对照组24 h Control group 24 h | 40 811 | ||
miEVs组24 h miEVs group 24 h | 91 309 | ||
FTA组24 h FTA group 24 h | 132 700 | ||
FTA-miEVs组24 h FTA-miEVs group 24 h | 262 288 | ||
对照组 Control group | 27 216 | ||
miEVs组 miEVs group | 40 726 | 49.64 | |
FTA组 FTA group | 71 797 | 163.58 | |
FTA-miEVs组 FTA-miEVs group | 192 814 | 608.48 |
Table 3
Scratch values were measured and scratch change values were calculated in the control group, miEVs group, KPF group and KPF-miEVs group"
组别 Group | 划痕值 Scratch value | 划痕变化值 Scratch change value | 迁移抑制率/% Migration inhibition rate |
对照组0 h Control group 0 h | 70 066 | ||
miEVs组0 h miEVs group 0 h | 40 998 | ||
KPF组0 h KPF group 0 h | 62 304 | ||
KPF-miEVs组0 h KPF-miEVs group 0 h | 75 478 | ||
对照组24 h Control group 24 h | 38 090 | ||
miEVs组24 h miEVs group 24 h | 88 719 | ||
KPF组24 h KPF group 24 h | 134 567 | ||
KPF-miEVs组24 h KPF-miEVs group 24 h | 274 649 | ||
对照组 Control group | 31 976 | ||
miEVs组 miEVs group | 46 429 | 45.20 | |
KPF组 KPF group | 72 263 | 125.99 | |
KPF-miEVs组 KPF-miEVs group | 199 171 | 522.88 |
1 | 刘玉峰, 朱丽君, 孙珊珊, 等. 连翘酯苷A的体内外代谢及药动学研究进展[J]. 辽宁大学学报: 自然科学版, 2019, 46 (1): 51- 59. |
LIU Y F , ZHU L J , SUN S S , et al. Research progress on metabolism and pharmacokinetics of forsythoside A[J]. Journal of Liaoning University: Natural Sciences Edition, 2019, 46 (1): 51- 59. | |
2 |
QUAN X H , LIU H H , YE D M , et al. Forsythoside A alleviates high glucose-induced oxidative stress and inflammation in podocytes by inactivating MAPK signaling via MMP12 inhibition[J]. Diabetes Metab Syndr Obes, 2021, 14, 1885- 1895.
doi: 10.2147/DMSO.S305092 |
3 |
WANG F , CAO G S , LI Y , et al. Characterization of forsythoside A metabolites in rats by a combination of UHPLC-LTQ-Orbitrap mass spectrometer with multiple data processing techniques[J]. Biomed Chromatogr, 2018, 32 (5): e4164.
doi: 10.1002/bmc.4164 |
4 |
SHEN P X , YU J C , LONG X C , et al. Effect of forsythoside A on the transcriptional profile of bovine mammary epithelial cells challenged with lipoteichoic acid[J]. Reprod Domest Anim, 2023, 58 (1): 89- 96.
doi: 10.1111/rda.14265 |
5 | XU J , YIN P , LIU X W , et al. Forsythoside A inhibits apoptosis and autophagy induced by infectious bronchitis virus through regulation of the PI3K/Akt/NF-κB pathway[J]. Microbiol Spectr, 2023, 11 (6): e01921- e01923. |
6 |
ZHANG X T , DING Y , KANG P , et al. Forsythoside A modulates zymosan-induced peritonitis in mice[J]. Molecules, 2018, 23 (3): 593.
doi: 10.3390/molecules23030593 |
7 |
WANG C Y , CHEN S S , GUO H Y , et al. Forsythoside A mitigates Alzheimer's-like pathology by inhibiting ferroptosis-mediated neuroinflammation via Nrf2/GPX4 axis activation[J]. Int J Biol Sci, 2022, 18 (5): 2075- 2090.
doi: 10.7150/ijbs.69714 |
8 |
ZHANG X , ZHANG H Q , GAO Y K , et al. Forsythoside A regulates autophagy and apoptosis through the AMPK/mTOR/ULK1 pathway and alleviates inflammatory damage in MAC-T cells[J]. Int Immunopharmacol, 2023, 118, 110053.
doi: 10.1016/j.intimp.2023.110053 |
9 |
PERIFERAKIS A , PERIFERAKIS K , BADARAU I A , et al. Kaempferol: antimicrobial properties, sources, clinical, and traditional applications[J]. Int J Mol Sci, 2022, 23 (23): 15054.
doi: 10.3390/ijms232315054 |
10 |
ALMATROUDI A , ALLEMAILEM K S , ALWANIAN W M , et al. Effects and mechanisms of kaempferol in the management of cancers through modulation of inflammation and signal transduction pathways[J]. Int J Mol Sci, 2023, 24 (10): 8630.
doi: 10.3390/ijms24108630 |
11 |
YANG L , GAO Y C , BAJPAI V K , et al. Advance toward isolation, extraction, metabolism and health benefits of kaempferol, a major dietary flavonoid with future perspectives[J]. Crit Rev Food Sci Nutr, 2023, 63 (16): 2773- 2789.
doi: 10.1080/10408398.2021.1980762 |
12 |
ALAM W , KHAN H , SHAH M A , et al. Kaempferol as a dietary anti-inflammatory agent: current therapeutic standing[J]. Molecules, 2020, 25 (18): 4073.
doi: 10.3390/molecules25184073 |
13 |
ULLAH A , MUNIR S , BADSHAH S L , et al. Important flavonoids and their role as a therapeutic agent[J]. Molecules, 2020, 25 (22): 5243.
doi: 10.3390/molecules25225243 |
14 |
ZHAO L L , YUAN X Y , WANG J B , et al. A review on flavones targeting serine/threonine protein kinases for potential anticancer drugs[J]. Bioorg Med Chem, 2019, 27 (5): 677- 685.
doi: 10.1016/j.bmc.2019.01.027 |
15 |
IMRAN M , RAUF A , SHAH Z A , et al. Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: a comprehensive review[J]. Phytother Res, 2019, 33 (2): 263- 275.
doi: 10.1002/ptr.6227 |
16 |
YUAN P , SUN X F , LIU X , et al. Kaempferol alleviates calcium oxalate crystal-induced renal injury and crystal deposition via regulation of the AR/NOX2 signaling pathway[J]. Phytomedicine, 2021, 86, 153555.
doi: 10.1016/j.phymed.2021.153555 |
17 |
MARSH S R , PRIDHAM K J , JOURDAN J , et al. Novel protocols for scalable production of high quality purified small extracellular vesicles from bovine milk[J]. Nanotheranostics, 2021, 5 (4): 488- 498.
doi: 10.7150/ntno.62213 |
18 |
RASHIDI M , BIJARI S , KHAZAEI A H , et al. The role of milk-derived exosomes in the treatment of diseases[J]. Front Genet, 2022, 13, 1009338.
doi: 10.3389/fgene.2022.1009338 |
19 |
AARTS J , BOLEIJ A , PIETERS B C H , et al. Flood control: how milk-derived extracellular vesicles can help to improve the intestinal barrier function and break the gut-joint axis in rheumatoid arthritis[J]. Front Immunol, 2021, 12, 703277.
doi: 10.3389/fimmu.2021.703277 |
20 |
AHADIAN S , FINBLOOM J A , MOFIDFAR M , et al. Micro and nanoscale technologies in oral drug delivery[J]. Adv Drug Deliv Rev, 2020, 157, 37- 62.
doi: 10.1016/j.addr.2020.07.012 |
21 |
WU L , WANG L L , LIU X , et al. Milk-derived exosomes exhibit versatile effects for improved oral drug delivery[J]. Acta Pharm Sin B, 2022, 12 (4): 2029- 2042.
doi: 10.1016/j.apsb.2021.12.015 |
22 |
SALEHI M , NEGAHDARI B , MEHRYAB F , et al. Milk-derived extracellular vesicles: biomedical applications, current challenges, and future perspectives[J]. J Agric Food Chem, 2024, 72 (15): 8304- 8331.
doi: 10.1021/acs.jafc.3c07899 |
23 |
KIM H , JANG H , CHO H , et al. Recent advances in exosome-based drug delivery for cancer therapy[J]. Cancers (Basel), 2021, 13 (17): 4435.
doi: 10.3390/cancers13174435 |
24 |
JANG H , KIM H , KIM E H , et al. Post-insertion technique to introduce targeting moieties in milk exosomes for targeted drug delivery[J]. Biomater Res, 2023, 27 (1): 124.
doi: 10.1186/s40824-023-00456-w |
25 | LI Y T , XING L Y , WANG L L , et al. Milk-derived exosomes as a promising vehicle for oral delivery of hydrophilic biomacromolecule drugs[J]. Asian J Pharm Sci, 2023, 18 (2): 100797. |
26 | 赵莹, 王靖雷, 王萌, 等. 奶牛乳源外泌体提取方法的优化及效果评价[J]. 动物营养学报, 2024, 36 (2): 1265- 1276. |
ZHAO Y , WANG J L , WANG M , et al. Optimization and evaluation of extraction methods of milk exosomes from dairy cows[J]. Chinese Journal of Animal Nutrition, 2024, 36 (2): 1265- 1276. | |
27 |
WANG M Q , ZHOU C H , CONG S , et al. Lipopolysaccharide inhibits triglyceride synthesis in dairy cow mammary epithelial cells by upregulating miR-27a-3p, which targets the PPARG gene[J]. J Dairy Sci, 2021, 104 (1): 989- 1001.
doi: 10.3168/jds.2020-18270 |
28 |
TONG C , CHEN T , CHEN Z W , et al. Forsythiaside a plays an anti-inflammatory role in LPS-induced mastitis in a mouse model by modulating the MAPK and NF-κB signaling pathways[J]. Res Vet Sci, 2021, 136, 390- 395.
doi: 10.1016/j.rvsc.2021.03.020 |
29 |
ZHANG J L , ZHANG Y , HUANG H L , et al. Forsythoside A inhibited S. aureus stimulated inflammatory response in primary bovine mammary epithelial cells[J]. Microb Pathog, 2018, 116, 158- 163.
doi: 10.1016/j.micpath.2018.01.002 |
30 |
LIU J J , GAO Y K , ZHANG H Q , et al. Forsythiaside A attenuates mastitis via PINK1/Parkin-mediated mitophagy[J]. Phytomedicine, 2024, 125, 155358.
doi: 10.1016/j.phymed.2024.155358 |
31 |
LEE C , YOON S , MOON J O . Kaempferol suppresses carbon tetrachloride-induced liver damage in rats via the MAPKs/NF-κB and AMPK/Nrf2 signaling pathways[J]. Int J Mol Sci, 2023, 24 (8): 6900.
doi: 10.3390/ijms24086900 |
32 |
ZHU X , WANG X L , YING T H , et al. Kaempferol alleviates the inflammatory response and stabilizes the pulmonary vascular endothelial barrier in LPS-induced sepsis through regulating the SphK1/S1P signaling pathway[J]. Chem Biol Interact, 2022, 368, 110221.
doi: 10.1016/j.cbi.2022.110221 |
33 |
DONOSO-MENESES D , FIGUEROA-VALDÉS A I , KHOURY M , et al. Oral administration as a potential alternative for the delivery of small extracellular vesicles[J]. Pharmaceutics, 2023, 15 (3): 716.
doi: 10.3390/pharmaceutics15030716 |
34 |
DEL POZO-ACEBO L , DE LAS HAZAS M C L , TOMÉ-CARNEIRO J , et al. Bovine milk-derived exosomes as a drug delivery vehicle for miRNA-based therapy[J]. Int J Mol Sci, 2021, 22 (3): 1105.
doi: 10.3390/ijms22031105 |
35 |
MUNIR J , NGU A , WANG H C , et al. Review: milk small extracellular vesicles for use in the delivery of therapeutics[J]. Pharm Res, 2023, 40 (4): 909- 915.
doi: 10.1007/s11095-022-03404-w |
36 |
MEHRYAB F , RABBANI S , SHAHHOSSEINI S , et al. Exosomes as a next-generation drug delivery system: an update on drug loading approaches, characterization, and clinical application challenges[J]. Acta Biomater, 2020, 113, 42- 62.
doi: 10.1016/j.actbio.2020.06.036 |
37 |
吕田田, 余海艳, 薛丙权, 等. 负载连翘苷的外泌体递药系统制备及体外评价[J]. 中国新药杂志, 2022, 31 (1): 89- 94.
doi: 10.3969/j.issn.1003-3734.2022.01.013 |
LÜ T T , YU Y H , XUE B Q , et al. Preparation and in vitro evaluation of phillyrin-loaded exosomal drug delivery system[J]. Chinese Journal of New Drugs, 2022, 31 (1): 89- 94.
doi: 10.3969/j.issn.1003-3734.2022.01.013 |
|
38 |
WANG Y T , HUO Y M , ZHAO C Y , et al. Engineered exosomes with enhanced stability and delivery efficiency for glioblastoma therapy[J]. J Control Release, 2024, 368, 170- 183.
doi: 10.1016/j.jconrel.2024.02.015 |
39 |
GUAN P F , FAN L , ZHU Z B , et al. M2 microglia-derived exosome-loaded electroconductive hydrogel for enhancing neurological recovery after spinal cord injury[J]. J Nanobiotechnology, 2024, 22 (1): 8.
doi: 10.1186/s12951-023-02255-w |
40 |
ALBALADEJO-GARCÍA V , MORÁN L , SANTOS-COQUILLAT A , et al. Curcumin encapsulated in milk small extracellular vesicles as a nanotherapeutic alternative in experimental chronic liver disease[J]. Biomed Pharmacother, 2024, 173, 116381.
doi: 10.1016/j.biopha.2024.116381 |
41 |
WANG C , LI M , XIA X H , et al. Construction of exosome-loaded LL-37 and its protection against zika virus infection[J]. Antiviral Res, 2024, 225, 105855.
doi: 10.1016/j.antiviral.2024.105855 |
42 |
WEI H X , CHEN J Y , WANG S L , et al. A nanodrug consisting of doxorubicin and exosome derived from mesenchymal stem cells for osteosarcoma treatment in vitro[J]. Int J Nanomedicine, 2019, 14, 8603- 8610.
doi: 10.2147/IJN.S218988 |
43 | KANDIMALLA R , AQIL F , ALHAKEEM S S , et al. Targeted oral delivery of paclitaxel using colostrum-derived exosomes[J]. Cancers(Basel), 2021, 13 (15): 3700. |
[1] | SUN Wenli, WANG Haoqi, ZE Licuo, GAO Yufan, ZHANG Feifan, ZHANG Jian, DUAN Mengqi, SHANG Peng, QIANG Bayangzong. Polymorphism of Pro-Inflammatory Factors (IL-1β, IL-6, TNF-α) in Tibetan Pigs and Its Association Analysis with Immune Traits [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1958-1969. |
[2] | KANG Fangyuan, LIU Zhentao, WU Kuixian, NI Han, ZHONG Kai, LI Heping, YANG Guoyu, HAN Liqiang. Regulation of Lipophagy on the Size of Lipid Droplets in Bovine Mammary Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1095-1101. |
[3] | LIU Yigang, MA Yuhui, FENG Qi, MA Xuelian, LI Na, SUN Yawei, YU Weihao, YAO Gang. The Changes of Blood Physio-biochemistry, Inflammatory and Hormone Factors in the Angular Limb Deformity Foals and Their Mares [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5854-5865. |
[4] | Xiaoxiu ZHAN, Pengyu LIU, Xiao'e XIANG, Shengyong MAO, Wei JIN. Effects of Methanomassiliicoccus DZ1 on Serum Trimethylamine-N-oxide and Inflammatory Factors, Liver Antioxidant Capacity and Cecum Microbiota in Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4679-4689. |
[5] | CAI Mingyu, ZHANG Hailong, HAI Zhenzhen, QIAO Yarui, DU Jun, ZHOU Xuezhang. The Inflamed Molecular Mechanism Induced by Recombined 14-3-3 Protein of Candida krusei on Bovine Mammary Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1679-1689. |
[6] | MENG Meijuan, WANG Yan, HUO Ran, LI Xuerui, CHANG Guangjun, SHEN Xiangzhen. Effect of Inhibition of PERK on LPS Induced Autophagy in Bovine Mammary Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 351-360. |
[7] | LIU Lihua, ZHONG Zhenyu, ZHENG Yujie, WANG Xin. lncRNA EPB41L4A-AS Inhibits the Proliferation of Bovine Mammary Epithelial Cells by Regulating the Expression of ErbB3 Gene [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2152-2159. |
[8] | GUO Dawei, HOU Silu, CHI Yujia, YU Feike, YU Xiaohan, DENG Qian, XIAO Chuanming, LIU Xiaoye, DONG Hong. Clinical Research of Qiying Decoction and Zigan Decoction on Promoting Reproductive Performance of Sows and Growth Performance of Weaned Piglets [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(6): 1994-2004. |
[9] | LI Yu, DUAN Chunhui, SONG Zhipan, YUE Sicong, WANG Yuan, ZHANG Yingjie, LIU Yueqin. Effects of PGF2α on Reproductive Hormones and Related Cytokines during Luteal Phase in Ewes [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(6): 1807-1818. |
[10] | DING Jun, FU Zilin, HE Junhao, DUAN Xiaowei, MA Lu, BU Dengpan. Research Progress of Milk-derived Exosomes [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(4): 1019-1029. |
[11] | SUN Peihao, ZHAO Xinzhe, WU Hanxiao, LÜ Ce, YANG Liguo, LIANG Aixin. Primary Culture and Biological Characteristics Analysis of Bovine Mammary Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2): 447-458. |
[12] | LIU Jiayi, WANG Fuzheng, WANG Chengzhi, DU Peng, ZHANG Mingyue, CHEN Siqi, ZHU Jiaxin, SUN Xu, WU Gaofeng, YANG Jiancheng. Evaluation of the Effect of Hypoallergenic Pet Core Material on Food-borne Allergic Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12): 4439-4449. |
[13] | REN Yuwei, WANG Feng, WANG Cheng, ZHANG Yan, SUN Ruiping, LIU Hailong, QIAO Chuanmin, XING Manping, HUANG Lili, CAO Zongxi, CHAO Zhe. The Whole-Genome Selection Signature Differences between Wuzhishan Pig and Duroc Pig [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12): 4172-4182. |
[14] | WU Yinghuan, YANG Danru, ZHAO Yanying. Bovine Allograft Inflammatory Factor-1 (AIF-1) Induces Inflammatory Mediator Secretion from Bovine Mammary Epithelial Cells via NF-κB Signaling [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(3): 782-788. |
[15] | OU Aiqun, WANG Kai, WU Liming, LI Jianghong, PENG Wenjun. Effects of Propolis on Transcript Levels of Inflammation-related Genes and Tight Junction Proteins of Bovine Mammary Epithelial Cells Stimulated by Bacterial Lipopolysaccharide [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(5): 1149-1157. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||