Acta Veterinaria et Zootechnica Sinica ›› 2022, Vol. 53 ›› Issue (4): 999-1009.doi: 10.11843/j.issn.0366-6964.2022.04.001
• REVIEW • Previous Articles Next Articles
LI Taotao1, JIN Meilin1, FEI Xiaojuan1, WANG Huihua1, LU Jian2, DI Ran1, WEI Caihong1,*
Received:
2021-08-17
Online:
2022-04-23
Published:
2022-04-25
CLC Number:
LI Taotao, JIN Meilin, FEI Xiaojuan, WANG Huihua, LU Jian, DI Ran, WEI Caihong. The Hox Gene Family and Its Effects on Spine Formation in Animals[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(4): 999-1009.
[1] | BÜRGLIN T R.Homeodomain subtypes and functional diversity[J].Subcell Biochem, 2011,52:95-122. |
[2] | SEIFERT A,WERHEID D F,KNAPP S M,et al.Role of Hox genes in stem cell differentiation[J].World J Stem Cells, 2015,7(3):583-595. |
[3] | MIKSIUNAS R,MOBASHERI A,BIRONAITE D.Homeobox genes and homeodomain proteins:new insights into cardiac development,degeneration and regeneration[J].Adv Exp Med Biol, 2020,1212:155-178. |
[4] | HOLLAND P W H.Evolution of homeobox genes[J].Wiley Interdiscip Rev Dev Biol, 2013,2(1):31-45. |
[5] | HE B,NI Z L,KONG S B,et al.Homeobox genes for embryo implantation:from mouse to human[J].Animal Model Exp Med, 2018,1(1):14-22. |
[6] | MALLO M,ALONSO C R.The regulation of Hox gene expression during animal development[J].Development, 2013, 140(19):3951-3963. |
[7] | POPOVICI C,LEVEUGLE M,BIRNBAUM D,et al.Homeobox gene clusters and the human paralogy map[J].FEBS Lett, 2001,491(3):237-242. |
[8] | SMITH J J,TIMOSHEVSKAYA N,YE C X,et al.The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution[J].Nat Genet, 2018,50(2):270-277. |
[9] | DU H L,TAYLOR H S.The role of Hox genes in female reproductive tract development,adult function,and fertility[J].Cold Spring Harb Perspect Med, 2015,6(1):a023002. |
[10] | SHAH N,SUKUMAR S.The Hox genes and their roles in oncogenesis[J].Nat Rev Cancer, 2010,10(5):361-371. |
[11] | KRUMLAUF R.Hox genes,clusters and collinearity[J].Int J Dev Biol, 2018,62(11-12):659-663. |
[12] | PASCUAL-ANAYA J,D’ANIELLO S,KURATANI S,et al.Evolution of Hox gene clusters in deuterostomes[J].BMC Dev Biol, 2013,13:26. |
[13] | AKAM M.Hox and HOM:homologous gene clusters in insects and vertebrates[J].Cell, 1989,57(3):347-349. |
[14] | DUBOULE D.The rise and fall of Hox gene clusters[J].Development, 2007,134(14):2549-2560. |
[15] | NOORDERMEER D,DUBOULE D.Chromatin architectures and Hox gene collinearity[J].Curr Top Dev Biol, 2013,104:113-148. |
[16] | DURSTON A J,JANSEN H J,IN DER RIEDEN P,et al.Hox collinearity-a new perspective[J].Int J Dev Biol, 2011, 55(10-12):899-908. |
[17] | YOUNG T,ROWLAND J E,VAN DE VEN C,et al.Cdx and Hox genes differentially regulate posterior axial growth in mammalian embryos[J].Dev Cell, 2009,17(4):516-526. |
[18] | MALLO M,WELLIK D M,DESCHAMPS J.Hox genes and regional patterning of the vertebrate body plan[J].Dev Biol, 2010, 344(1):7-15. |
[19] | PINEAULT K M,WELLIK D M.Hox genes and limb musculoskeletal development[J].Curr Osteoporos Rep, 2014,12(4): 420-427. |
[20] | WELLIK D M,CAPECCHI M R.Hox 10 and Hox 11 genes are required to globally pattern the mammalian skeleton[J].Science, 2003,301(5631):363-367. |
[21] | MCINTYRE D C,RAKSHIT S,YALLOWITZ A R,et al.Hox patterning of the vertebrate rib cage[J].Development, 2007,134(16):2981-2989. |
[22] | WELLIK D M,HAWKES P J,CAPECCHI M R.Hox 11 paralogous genes are essential for metanephric kidney induction[J].Genes Dev, 2002,16(11):1423-1432. |
[23] | MAROULAKOU I G,SPYROPOULOS D D.The study of HOX gene function in hematopoietic,breast and lung carcinogenesis[J].Anticancer Res, 2003,23(3A):2101-2110. |
[24] | GAUNT S J.Hox cluster genes and collinearities throughout the tree of animal life[J].Int J Dev Biol, 2018,62(11-12):673-683. |
[25] | KMITA M,TARCHINI B,ZÀKÀNY J,et al.Early developmental arrest of mammalian limbs lacking HoxA /HoxD gene function[J].Nature, 2005,435(7045):1113-1116. |
[26] | FREITAS R,GÓMEZ-MARÍN C,WILSON J M,et al.Hoxd 13 contribution to the evolution of vertebrate appendages[J].Dev Cell, 2012,23(6):1219-1229. |
[27] | BOULET A M,CAPECCHI M R.Multiple roles of Hoxa 11 and Hoxd 11 in the formation of the mammalian forelimb zeugopod[J].Development, 2004,131(2):299-309. |
[28] | SONG J Y,PINEAULT K M,DONES J M,et al.Hox genes maintain critical roles in the adult skeleton[J].Proc Natl Acad Sci U S A, 2020,117(13):7296-7304. |
[29] | ZANATTA A,ROCHA A M,CARVALHO F M,et al.The role of the Hoxa 10/HOXA 10 gene in the etiology of endometriosis and its related infertility:a review[J].J Assist Reprod Genet, 2010,27(12):701-710. |
[30] | BENSON G V,LIM H,PARIA B C,et al.Mechanisms of reduced fertility in Hoxa -10 mutant mice:uterine homeosis and loss of maternal Hoxa -10 expression[J].Development, 1996,122(9):2687-2696. |
[31] | WANG Y,HU S G,YAO G X,et al.Identification of HOXA 10 target genes in human endometrial stromal cells by RNA-seq analysis[J].Acta Biochim Biophys Sin (Shanghai), 2021,53(3):365-371. |
[32] | BIRK O S,CASIANO D E,WASSIF C A,et al.The LIM homeobox gene Lhx 9 is essential for mouse gonad formation[J].Nature, 2000,403(6772):909-913. |
[33] | LAWRENCE H J,CHRISTENSEN J,FONG S,et al.Loss of expression of the Hoxa -9 homeobox gene impairs the proliferation and repopulating ability of hematopoietic stem cells[J].Blood, 2005,106(12):3988-3994. |
[34] | HUANG Y S,SITWALA K,BRONSTEIN J,et al.Identification and characterization of Hoxa 9 binding sites in hematopoietic cells[J].Blood, 2012,119(2):388-398. |
[35] | ALSAYEGH K,CORTÉS-MEDINA L V,RAMOS-MANDUJANO G,et al.Hematopoietic differentiation of human pluripotent stem cells:HOX and GATA transcription factors as master regulators[J].Curr Genomics, 2019,20(6):438-452. |
[36] | WEERKAMP F,LUIS T C,NABER B A E,et al.Identification of Notch target genes in uncommitted T-cell progenitors:no direct induction of a T-cell specific gene program[J].Leukemia, 2006,20(11):1967-1977. |
[37] | ALHARBI R A,PETTENGELL R,PANDHA H S,et al.The role of HOX genes in normal hematopoiesis and acute leukemia[J].Leukemia, 2013,27(5):1000-1008. |
[38] | THORSTEINSDOTTIR U,MAMO A,KROON E,et al.Overexpression of the myeloid leukemia-associated Hoxa 9 gene in bone marrow cells induces stem cell expansion[J].Blood, 2002,99(1):121-129. |
[39] | ADAMAKI M,GOULIELMAKI M,CHRISTODOULOU I,et al.Homeobox gene involvement in normal hematopoiesis and in the pathogenesis of childhood leukemias[J].Crit Rev Oncog, 2017,22(3-4):157-185. |
[40] | LI B,HUANG Q L,WEI G H.The role of HOX transcription factors in cancer predisposition and progression[J].Cancers (Basel), 2019,11(4):528. |
[41] | LUO Z F,RHIE S K,FARNHAM P J.The enigmatic HOX genes:can we crack their code?[J].Cancers (Basel), 2019,11(3):323. |
[42] | MONTERISI S,LO RISO P,RUSSO K,et al.HOXB 7 overexpression in lung cancer is a hallmark of acquired stem-like phenotype[J].Oncogene, 2018,37(26):3575-3588. |
[43] | DAI L F,HU W D,YANG Z,et al.Upregulated expression of HOXB 7 in intrahepatic cholangiocarcinoma is associated with tumor cell metastasis and poor prognosis[J].Lab Invest, 2019,99(6):736-748. |
[44] | BHATLEKAR S,FIELDS J Z,BOMAN B M.HOX genes and their role in the development of human cancers[J].J Mol Med (Berl), 2014,92(8):811-823. |
[45] | DE BESSA GARCIA S A,ARA AÚJO M,PEREIRA T,et al.HOX genes function in Breast Cancer development[J].Biochim Biophys Acta Rev Cancer, 2020,1873(2):188358. |
[46] | FENG Y Y,ZHANG T Y,WANG Y J,et al.Homeobox genes in cancers:from carcinogenesis to recent therapeutic intervention[J].Front Oncol, 2021,11:770428. |
[47] | CHRIST B,HUANG R J,SCAAL M.Amniote somite derivatives[J].Dev Dyn, 2007,236(9):2382-2396. |
[48] | NARITA Y,KURATANI S.Evolution of the vertebral formulae in mammals:a perspective on developmental constraints[J].J Exp Zool B Mol Dev Evol, 2005,304B(2):91-106. |
[49] | HAUTIER L,WEISBECKER V,SÁNCHEZ-VILLAGRA M R,et al.Skeletal development in sloths and the evolution of mammalian vertebral patterning[J].Proc Natl Acad Sci U S A, 2010,107(44):18903-18908. |
[50] | HORAN G S,RAMÍREZ-SOLIS R,FEATHERSTONE M S,et al.Compound mutants for the paralogous hoxa -4,hoxb -4,and hoxd -4 genes show more complete homeotic transformations and a dose-dependent increase in the number of vertebrae transformed[J].Genes Dev, 1995,9(13):1667-1677. |
[51] | BURKE A C,NELSON C E,MORGAN B A,et al.Hox genes and the evolution of vertebrate axial morphology[J].Development, 1995,121(2):333-346. |
[52] | CONDIE B G,CAPECCHI M R.Mice with targeted disruptions in the paralogous genes hoxa -3 and hoxd -3 reveal synergistic interactions[J].Nature, 1994,370(6487):304-307. |
[53] | BURKE A C,NOWICKI J L.A new view of patterning domains in the vertebrate mesoderm[J].Dev Cell, 2003,4(2):159-165. |
[54] | VINAGRE T,MONCAUT N,CARAPUÇO M,et al.Evidence for a myotomal Hox /Myf cascade governing nonautonomous control of rib specification within global vertebral domains[J].Dev Cell, 2010,18(4):655-661. |
[55] | WELLIK D M.Hox patterning of the vertebrate axial skeleton[J].Dev Dyn, 2007,236(9):2454-2463. |
[56] | CARAPUÓO M,NÓVOA A,BOBOLA N,et al.Hox genes specify vertebral types in the presomitic mesoderm[J].Genes Dev, 2005,19(18):2116-2121. |
[57] | DI-POÏ N,MONTOYA-BURGOS J I,MILLER H,et al.Changes in Hox genes’ structure and function during the evolution of the squamate body plan[J].Nature, 2010,464(7285):99-103. |
[58] | ECONOMIDES K D,ZELTSER L,CAPECCHI M R.Hoxb 13 mutations cause overgrowth of caudal spinal cordand tail vertebrae[J].Dev Biol, 2003,256(2):317-330. |
[59] | NEIJTS R,AMIN S,VAN ROOIJEN C,et al.Cdx is crucial for the timing mechanism driving colinear Hox activation and defines a trunk segment in the Hox cluster topology[J].Dev Biol, 2017,422(2):146-154. |
[60] | YOUNG T,DESCHAMPS J.Hox, Cdx, and anteroposterior patterning in the mouse embryo[J].Curr Top Dev Biol, 2009,88: 235-255. |
[61] | ZHU K J,SPAINK H P,DURSTON A J.Collinear Hox -Hox interactions are involved in patterning the vertebrate anteroposterior (A-P) axis[J].PLoS One, 2017,12(4):e0175287. |
[62] | KMITA M,DUBOULE D.Organizing axes in time and space; 25 years of colinear tinkering[J].Science, 2003,301(5631):331-333. |
[63] | ZHU K J,SPAINK H P,DURSTON A J.Hoxc 6 loss of function truncates the main body axis in Xenopus[J].Cell Cycle, 2017, 16(11):1136-1138. |
[64] | MCNULTY C L,PERES J N,BARDINE N,et al.Knockdown of the complete Hox paralogous group 1 leads to dramatic hindbrain and neural crest defects[J].Development, 2005,132(12):2861-2871. |
[65] | ALEXANDER T,NOLTE C,KRUMLAUF R.Hox genes and segmentation of the hindbrain and axial skeleton[J].Annu Rev Cell Dev Biol, 2009,25:431-456. |
[66] | DUBRULLE J,POURQUIÉ O.Coupling segmentation to axis formation[J].Development, 2004,131(23):5783-5793. |
[67] | 刘 倩,岳静伟,牛乃琪,等.脊椎动物胚胎期脊椎的形成及信号通路调控机制[J].畜牧兽医学报,2021,52(6):1461-1470.LIU Q,YUE J W,NIU N Q,et al.The regulation mechanism and signal pathway for spine formation in vertebrate embryo[J].Acta Veterinaria et Zootechnica Sinica, 2021,52(6):1461-1470.(in Chinese) |
[68] | NEIJTS R,DESCHAMPS J.At the base of colinear Hox gene expression:cis -features and trans -factors orchestrating the initial phase of Hox cluster activation[J].Dev Biol, 2017,428(2):293-299. |
[69] | MALLO M.Reassessing the role of Hox genes during vertebrate development and evolution[J].Trends Genet, 2018,34(3): 209-217. |
[70] | NEIJTS R,AMIN S,VAN ROOIJEN C,et al.Polarized regulatory landscape and Wnt responsiveness underlie Hox activation in embryos[J].Genes Dev, 2016,30(17):1937-1942. |
[71] | DURSTON A J.What are the roles of retinoids,other morphogens,and Hox genes in setting up the vertebrate body axis?[J].Genesis, 2019,57(7-8):e23296. |
[72] | ZÁKÁNY J,KMITA M,ALARCON P,et al.Localized and transient transcription of Hox genes suggests a link between patterning and the segmentation clock[J].Cell, 2001,106(2):207-217. |
[73] | CORDES R,SCHUSTER-GOSSLER K,SERTH K,et al.Specification of vertebral identity is coupled to Notch signalling and the segmentation clock[J].Development, 2004,131(6):1221-1233. |
[74] | POLLARD S L,HOLLAND P W H.Evidence for 14 homeobox gene clusters in human genome ancestry[J].Curr Biol, 2000, 10(17):1059-1062. |
[75] | AMIN S,NEIJTS R,SIMMINI S,et al.Cdx and T brachyury co-activate growth signaling in the embryonic axial progenitor niche[J].Cell Rep, 2016,17(12):3165-3177. |
[76] | JURBERG A D,AIRES R,VARELA-LASHERAS I,et al.Switching axial progenitors from producing trunk to tail tissues in vertebrate embryos[J].Dev Cell, 2013,25(5):451-462. |
[77] | MATSUBARA Y,HIRASAWA T,EGAWA S,et al.Anatomical integration of the sacral-hindlimb unit coordinated by GDF11 underlies variation in hindlimb positioning in tetrapods[J].Nat Ecol Evol, 2017,1(9):1392-1399. |
[78] | GAUNT S J,GEORGE M,PAUL Y L.Direct activation of a mouse Hoxd 11 axial expression enhancer by Gdf11/Smad signalling[J].Dev Biol, 2013,383(1):52-60. |
[79] | SOSHNIKOVA N,DUBOULE D.Epigenetic temporal control of mouse Hox genes in vivo [J].Science, 2009,324(5932):1320-1323. |
[80] | RINGROSE L,PARO R.Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins[J].Annu Rev Genet, 2004,38:413-443. |
[81] | SCHUETTENGRUBER B,MARTINEZ A M,IOVINO N,et al.Trithorax group proteins:switching genes on and keeping them active[J].Nat Rev Mol Cell Biol, 2011,12(12):799-814. |
[82] | LEE T I,JENNER R G,BOYER L A,et al.Control of developmental regulators by Polycomb in human embryonic stem cells[J].Cell, 2006,125(2):301-313. |
[83] | BARBER B A,RASTEGAR M.Epigenetic control of Hox genes during neurogenesis,development,and disease[J].Ann Anat, 2010,192(5):261-274. |
[84] | DUAN Y Y,ZHANG H,ZHANG Z,et al.VRTN is required for the development of thoracic vertebrae in mammals[J].Int J Biol Sci, 2018,14(6):667-681. |
[85] | LI K,SUN X H,CHEN M X,et al.Evolutionary changes of Hox genes and relevant regulatory factors provide novel insights into mammalian morphological modifications[J].Integr Zool, 2018,13(1):21-35. |
[86] | ROHRER G A,NONNEMAN D J,WIEDMANN R T,et al.A study of vertebra number in pigs confirms the association of vertnin and reveals additional QTL[J].BMC Genet, 2015,16:129. |
[87] | NIU N,WANG H,SHI G,et al.Genome scanning reveals novel candidate genes for vertebral and teat number in the Beijing Black Pig[J].Anim Genet, 2021,52(5):734-738. |
[88] | LI C Y,LI M,LI X Y,et al.Whole-genome resequencing reveals loci associated with thoracic vertebrae number in sheep[J].Front Genet, 2019,10:674. |
[89] | POSBERGH C J,HUSON H J.All sheeps and sizes:a genetic investigation of mature body size across sheep breeds reveals a polygenic nature[J].Anim Genet, 2021,52(1):99-107. |
[90] | YURCHENKO A A,DENISKOVA T E,YUDIN N S,et al.High-density genotyping reveals signatures of selection related to acclimation and economically important traits in 15 local sheep breeds from Russia[J].BMC Genomics, 2019,20(Suppl 3):294. |
[91] | GONZÁLEZ-PRENDES R,QUINTANILLA R,MÁRMOL-SÁNCHEZ E,et al.Comparing the mRNA expression profile and the genetic determinism of intramuscular fat traits in the porcine gluteus medius and longissimus dorsi muscles[J].BMC Genomics, 2019,20(1):170. |
[92] | DE WILDE J,HULSHOF M F,BOEKSCHOTEN M V,et al.The embryonic genes Dkk 3,Hoxd 8,Hoxd 9 and Tbx 1 identify muscle types in a diet-independent and fiber-type unrelated way[J].BMC Genomics, 2010,11:176. |
[93] | 楚金雨,李绍梅,杨 戈,等.基于转录组数据挖掘藏羊立毛肌发生的关键基因[J].畜牧兽医学报,2021,52(8):2171-2180.CHU J Y,LI S M,YANG G,et al.Mining key genes of arrector pili muscle development in tibetan sheep based on transcriptome data[J].Acta Veterinaria et Zootechnica Sinica, 2021,52(8):2171-2180.(in Chinese) |
[94] | ARMSTRONG E,IRIARTE A,NICOLINI P,et al.Comparison of transcriptomic landscapes of different lamb muscles using RNA-Seq[J].PLoS One, 2018,13(7):e0200732. |
[1] | LAN Xinrui, ZHAO Baobao, ZHANG Bihan, LIN Xiaoyu, MA Huiming, WANG Yongsheng. Effects of β-sitosterol on Porcine Oocyte Maturation and Embryonic Development in Vitro [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1629-1637. |
[2] | LI Yujun, HE Honghong, YANG Lixue, YANG Xiaogeng, LI Jian, ZHANG Huizhu. Advances in Regulation of Mammalian Embryonic Development by Mitochondrial Autophagy [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 905-912. |
[3] | ZHANG Chenjian, LI Yinxia, DING Qiang, LIU Weijia, WANG Huili, HE Nan, WU Jiashun, CAO Shaoxian. Efficient Preparation of CRISPR/Cas9-mediated Goat SOCS2 Gene Edited Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 129-141. |
[4] | CHEN Yuetong, LIU Xiaohan, WANG Zhiyang, ZHAO Yuxin, ZHOU Tiezhong, HU Zengjin, ZHU Yue, WANG Shaohui, TIAN Mingxing, DING Siyu, QI Jingjing, YU Shengqing. Isolation, Identification, Pathogenicity and Drug Susceptibility of Mycoplasma gallisepticum from Dead Chicken Embryos in Large-scale Chicken Farms in Guangdong Province [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 290-299. |
[5] | ZHENG Gang, LIAN Ling. Research Progress of Key Regulatory Gene DMRT1 in Chicken Sex Determination and Differentiation [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3152-3163. |
[6] | ZHANG Hang, YANG Baigao, XU Xi, FENG Xiaoyi, DU Weihua, HAO Haisheng, ZHU Huabin, ZHANG Peipei, ZHAO Xueming. Research Progress on the Mechanism of Heat Stress Affecting the Development of Dairy Cow Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2692-2700. |
[7] | ZHU Jiaqiao, CHENG Laiyang, CAO Jiangqin, ZHU Min, LI Junwei, JU Huimin, LIU Zongping. Preliminary Study on the Location and Function of XRCC1 in Oocyte and Early Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 2126-2133. |
[8] | QIN Xue, SHA Yiwen, YANG Menghao, CAI Rui, PANG Weijun. Advances in Regulation of Non-coding RNA on Mammalian Endometrial Receptivity and Decidualization [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1347-1358. |
[9] | FENG Xiaoyi, YANG Baigao, HAO Haisheng, DU Weihua, ZHU Huabin, CUI Kai, ZHAO Xueming. Mechanism and Solution of Heat Stress Induced Embryo Quality Decline in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 868-876. |
[10] | YANG Xiaogeng, ZHANG Huizhu, LI Jian, XIANG Hua, HE Honghong. Research Progress of the DNA Methylation in Mammalian Oocyte and Early Embryo Development [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 443-450. |
[11] | FENG Xiaoyi, XU Xi, ZHANG Hang, YANG Baigao, ZHANG Peipei, HAO Haisheng, DU Weihua, ZHU Huabin, CUI Kai, ZHAO Xueming. Advances in Cryopreservation of Bovine Embryo in vitro [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 451-462. |
[12] | CHEN Siying, SUN Yawen, LI Kang, LIU Shuo, HAO Haisheng, DU Weihua, ZOU Huiying, ZHU Huabin, PANG Yunwei. Application of Microfluidic Technologies in Livestock in vitro Embryo Production [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 4889-4897. |
[13] | ZHANG Chenyibo, YU Tong, REN Binbin, ZHENG Ruizhi, ZHU Wenzhi, SU Jianmin. Mechanism of Epigenetic Reprogramming of Early Animal Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 4898-4909. |
[14] | NIU Yifan, YANG Baigao, ZHANG Peipei, ZHANG Hang, FENG Xiaoyi, CAO Jianhua, YU Zhou, HAO Haisheng, DU Weihua, ZOU Huiying, ZHU Huabin, MA Youji, ZHAO Xueming. Advances in Bovine Embryo Genome Selection [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4449-4457. |
[15] | LUO Ruijie, CAO Suying. Research Progress and Application Prospect of Livestock Pluripotent Stem Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4003-4015. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||