Acta Veterinaria et Zootechnica Sinica ›› 2023, Vol. 54 ›› Issue (7): 2692-2700.doi: 10.11843/j.issn.0366-6964.2023.07.003
• REVIEW • Previous Articles Next Articles
ZHANG Hang, YANG Baigao, XU Xi, FENG Xiaoyi, DU Weihua, HAO Haisheng, ZHU Huabin, ZHANG Peipei, ZHAO Xueming*
Received:
2022-12-01
Online:
2023-07-23
Published:
2023-07-21
CLC Number:
ZHANG Hang, YANG Baigao, XU Xi, FENG Xiaoyi, DU Weihua, HAO Haisheng, ZHU Huabin, ZHANG Peipei, ZHAO Xueming. Research Progress on the Mechanism of Heat Stress Affecting the Development of Dairy Cow Embryos[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2692-2700.
[1] | 刘秀娟.中国奶业发展策略研究[D].保定:河北农业大学, 2019.LIU X J.Research on the development strategy of China's dairy industry[D].Baoding:Hebei Agricultural University, 2019.(in Chinese) |
[2] | 杨祯妮, 祝文琪, 程广燕.2021年奶业市场形势回顾与2022年趋势研判[J].中国畜牧杂志, 2022, 58(5):273-276.YANG Z N, ZHU W Q, CHENG G Y.Review of dairy market situation in 2021 and analysis of trend in 2022[J].Chinese Journal of Animal Science, 2022, 58(5):273-276.(in Chinese) |
[3] | DASH S, CHAKRAVARTY A K, SINGH A, et al.Effect of heat stress on reproductive performances of dairy cattle and buffaloes:a review[J].Vet World, 2016, 9(3):235-244. |
[4] | THORNTON P, NELSON G, MAYBERRY D, et al.Impacts of heat stress on global cattle production during the 21st century:a modelling study[J].Lancet Planet Health, 2022, 6(3):e192-e201. |
[5] | WANKAR A K, RINDHE S N, DOIJAD N S.Heat stress in dairy animals and current milk production trends, economics, and future perspectives:the global scenario[J].Trop Anim Health Prod, 2021, 53(1):70. |
[6] | 亓建刚.热应激对北京地区荷斯坦牛生产性状的影响[D].乌鲁木齐:新疆农业大学, 2018.QI J G.Effects of heat stress on the production traits of Holstein in Beijing[D].Urumqi:Xinjiang Agricultural University, 2018.(in Chinese) |
[7] | WOLFENSON D, ROTH Z.Impact of heat stress on cow reproduction and fertility[J].Anim Front, 2019, 9(1):32-38. |
[8] | GERNAND E, KÖNIG S, KIPP C.Influence of on-farm measurements for heat stress indicators on dairy cow productivity, female fertility, and health[J].J Dairy Sci, 2019, 102(7):6660-6671. |
[9] | BERMAN A.An overview of heat stress relief with global warming in perspective[J].Int J Biometeorol, 2019, 63(4):493-498. |
[10] | RANJITKAR S, BU D P, VAN WIJK M, et al.Will heat stress take its toll on milk production in China?[J].Clim Change, 2020, 161(4):637-652. |
[11] | ROTH Z.Reproductive physiology and endocrinology responses of cows exposed to environmental heat stress-experiences from the past and lessons for the present[J].Theriogenology, 2020, 155:150-156. |
[12] | KASIMANICKAM R, KASIMANICKAM V.Impact of heat stress on embryonic development during first 16 days of gestation in dairy cows[J].Sci Rep, 2021, 11(1):14839. |
[13] | BESENFELDER U, BREM G, HAVLICEK V.Review:environmental impact on early embryonic development in the bovine species[J].Animal, 2020, 14(S1):s103-s112. |
[14] | NANAS I, CHOUZOURIS T M, DOVOLOU E, et al.Early embryo losses, progesterone and pregnancy associated glycoproteins levels during summer heat stress in dairy cows[J].J Therm Biol, 2021, 98:102951. |
[15] | 张志登, 刘 影, 王 玲.热应激对奶牛繁殖性能的影响研究进展[J].中国畜牧杂志, 2019, 55(5):5-10.ZHANG Z D, LIU Y, WANG L.Progress in research on effects of heat stress on reproductive performance of dairy cows[J].Chinese Journal of Animal Science, 2019, 55(5):5-10.(in Chinese) |
[16] | STAMPERNA K, DOVOLOU E, GIANNOULIS T, et al.Developmental competence of heat stressed oocytes from Holstein and limousine cows matured in vitro[J].Reprod Domest Anim, 2021, 56(10):1302-1314. |
[17] | WOLFENSON D, ROTH Z, MEIDAN R.Impaired reproduction in heat-stressed cattle:basic and applied aspects[J].Anim Reprod Sci, 2000, 60-61:535-547. |
[18] | BÁEZ F, LÓPEZ DARRIULAT R, RODRÍGUEZ-OSORIO N, et al.Effect of season on germinal vesicle stage, quality, and subsequent in vitro developmental competence in bovine cumulus-oocyte complexes[J].J Therm Biol, 2022, 103:103171. |
[19] | CAMARGO L S A, AGUIRRE-LAVIN T, ADENOT P, et al.Heat shock during in vitro maturation induces chromatin modifications in the bovine embryo[J].Reproduction, 2019, 158(4):313-322. |
[20] | ROTH Z, WOLFENSON D.Comparing the effects of heat stress and mastitis on ovarian function in lactating cows:basic and applied aspects[J].Domest Anim Endocrinol, 2016, 56(S):S218-S227. |
[21] | ROTH Z.Heat stress, the follicle, and its enclosed oocyte:mechanisms and potential strategies to improve fertility in dairy cows[J]. Reprod Domest Anim, 2008, 43:238-244. |
[22] | ROTH Z.Effect of heat stress on reproduction in dairy cows:insights into the cellular and molecular responses of the oocyte[J]. Annu Rev Anim Biosci, 2017, 5:151-170. |
[23] | CORDEIRO A L L, SATRAPA R A, GREGIANINI H A G, et al.Influence of temperature-humidity index on conception rate of Nelore embryos produced in vitro in northern Brazil[J].Trop Anim Health Prod, 2020, 52(3):1527-1532. |
[24] | ABDEL AZIZ R L, HUSSEIN M M, MOHAMED M A A, et al.Heat stress during critical windows of the oestrous cycle and risk of pregnancy establishment in embryo-recipient dairy heifers[J].Reprod Domest Anim, 2022, 57(8):856-863. |
[25] | STAMPERNA K, GIANNOULIS T, DOVOLOU E, et al.The effects of heat shock protein 70 addition in the culture medium on the development and quality of in vitro produced heat shocked bovine embryos[J].Animals, 2021, 11(12):3347. |
[26] | NARANJO-GÓMEZ J S, URIBE-GARCÍA H F, HERRERA-SÁNCHEZ M P, et al.Heat stress on cattle embryo:gene regulation and adaptation[J].Heliyon, 2021, 7(3):e06570. |
[27] | HANSEN P J.Reproductive physiology of the heat-stressed dairy cow:implications for fertility and assisted reproduction[J].Anim Reprod, 2019, 16(3):497-507. |
[28] | 张 弛.热应激对牛体细胞克隆胚胎早期发育的影响[D].杨凌:西北农林科技大学, 2007.ZHANG C.The effect of heat shock on development of cloned embryo[D].Yangling:Northwest Agriculture and Forestry University, 2007.(in Chinese) |
[29] | 赵 园, 齐晓楠, 田文儒.热应激影响奶牛繁殖力及其应对措施[J].黑龙江畜牧兽医, 2015(11):109-112.ZHAO Y, QI X N, TIAN W R.Effect of heat stress on cow fecundity and its countermeasures[J].Heilongjiang Animal Science and Veterinary Medicine, 2015(11):109-112.(in Chinese) |
[30] | ROTH Z.Cooling is the predominant strategy to alleviate the effects of heat stress on dairy cows[J].Reprod Domest Anim, 2022, 57(S1):16-22. |
[31] | FLAMENBAUM I, GALON N.Management of heat stress to improve fertility in dairy cows in Israel[J].J Reprod Dev, 2010, 56(S):S36-S41. |
[32] | DOS SANTOS S G C G, SARAIVA E P, GONZAGA NETO S, et al.Heat tolerance, thermal equilibrium and environmental management strategies for dairy cows living in intertropical regions[J].Front Vet Sci, 2022, 9:988775. |
[33] | FARIA A F P A, MAIA A S C, MOURA G A B, et al.Use of solar panels for shade for Holstein heifers[J].Animals (Basel), 2023, 13(3):329. |
[34] | FRIEDMAN E, VOET H, REZNIKOV D, et al.Hormonal treatment before and after artificial insemination differentially improves fertility in subpopulations of dairy cows during the summer and autumn[J].J Dairy Sci, 2014, 97(12):7465-7475. |
[35] | MISHRA S R.Behavioural, physiological, neuro-endocrine and molecular responses of cattle against heat stress:an updated review[J].Trop Anim Health Prod, 2021, 53(3):400. |
[36] | HANSEN P J, TRÍBULO P.Regulation of present and future development by maternal regulatory signals acting on the embryo during the morula to blastocyst transition-insights from the cow[J].Biol Reprod, 2019, 101(3):526-537. |
[37] | BONILLA A Q S, OZAWA M, HANSEN P J.Timing and dependence upon mitogen-activated protein kinase signaling for pro-developmental actions of insulin-like growth factor 1 on the preimplantation bovine embryo[J].Growth Horm IGF Res, 2011, 21(2):107-111. |
[38] | HANSEN P J.To be or not to be-determinants of embryonic survival following heat shock[J].Theriogenology, 2007, 68(S1):S40-S48. |
[39] | JOUSAN F D, HANSEN P J.Insulin-like growth factor-I as a survival factor for the bovine preimplantation embryo exposed to heat shock[J].Biol Reprod, 2004, 71(5):1665-1670. |
[40] | ASCARI I J, ALVES N G, JASMIN J, et al.Addition of insulin-like growth factor I to the maturation medium of bovine oocytes subjected to heat shock:effects on the production of reactive oxygen species, mitochondrial activity and oocyte competence[J].Domest Anim Endocrinol, 2017, 60:50-60. |
[41] | RODRIGUES T A, ISPADA J, RISOLIA P H B, et al.Thermoprotective effect of insulin-like growth factor 1 on in vitro matured bovine oocyte exposed to heat shock[J].Theriogenology, 2016, 86(8):2028-2039. |
[42] | LIMA R S, RISOLIA P H B, ISPADA J, et al.Role of insulin-like growth factor 1 on cross-bred Bos indicus cattle germinal vesicle oocytes exposed to heat shock[J].Reprod Fertil Dev, 2017, 29(7):1405-1414. |
[43] | BLOCK J, HANSEN P J.Interaction between season and culture with insulin-like growth factor-1 on survival of in vitro produced embryos following transfer to lactating dairy cows[J].Theriogenology, 2007, 67(9):1518-1529. |
[44] | BLOCK J, WRENZYCKI C, NIEMANN H, et al.Effects of insulin-like growth factor-1 on cellular and molecular characteristics of bovine blastocysts produced in vitro[J].Mol Reprod Dev, 2008, 75(5):895-903. |
[45] | BONILLA A Q S, OLIVEIRA L J, OZAWA M, et al.Developmental changes in thermoprotective actions of insulin-like growth factor-1 on the preimplantation bovine embryo[J].Mol Cell Endocrinol, 2011, 332(1-2):170-179. |
[46] | JOUSAN F D, OLIVEIRA L J, HANSEN P J.Short-term culture of in vitro produced bovine preimplantation embryos with insulin-like growth factor-I prevents heat shock-induced apoptosis through activation of the phosphatidylinositol 3-kinase/Akt pathway[J].Mol Reprod Dev, 2008, 75(4):681-688. |
[47] | MI[XCE.TIF;S*4, JZ] TKIEWSKA K, KORDOWITZKI P, PAREEK C S.Effects of heat stress on bovine oocytes and early embryonic development-an update[J].Cells, 2022, 11(24):4073. |
[48] | GENDELMAN M, ROTH Z.Incorporation of coenzyme Q10 into bovine oocytes improves mitochondrial features and alleviates the effects of summer thermal stress on developmental competence[J].Biol Reprod, 2012, 87(5):118. |
[49] | ABDULHASAN M K, LI Q, DAI J, et al.CoQ10 increases mitochondrial mass and polarization, ATP and Oct4 potency levels, and bovine oocyte MII during IVM while decreasing AMPK activity and oocyte death[J].J Assist Reprod Genet, 2017, 34(12):1595-1607. |
[50] | YANG C X, LIU S, MIAO J K, et al.CoQ10 improves meiotic maturation of pig oocytes through enhancing mitochondrial function and suppressing oxidative stress[J].Theriogenology, 2021, 159:77-86. |
[51] | LEE C H, KANG M K, SOHN D H, et al.Coenzyme Q10 ameliorates the quality of mouse oocytes during in vitro culture[J].Zygote, 2022, 30(2):249-257. |
[52] | BEN-MEIR A, BURSTEIN E, BORREGO-ALVAREZ A, et al.Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging[J].Aging Cell, 2015, 14(5):887-895. |
[53] | CAVALLARI F D C, LEAL C L V, ZVI R, et al.Effects of melatonin on production of reactive oxygen species and developmental competence of bovine oocytes exposed to heat shock and oxidative stress during in vitro maturation[J].Zygote, 2019, 27(3):180-186. |
[54] | YAACOBI-ARTZI S, SHIMONI C, KALO D, et al.Melatonin slightly alleviates the effect of heat shock on bovine oocytes and resulting blastocysts[J].Theriogenology, 2020, 158:477-489. |
[55] | CEBRIAN-SERRANO A, SALVADOR I, RAGA E, et al.Beneficial effect of melatonin on blastocyst in vitro production from heat-stressed bovine oocytes[J].Reprod Domest Anim, 2013, 48(5):738-746. |
[56] | AN Q L, PENG W, CHENG Y Y, et al.Melatonin supplementation during in vitro maturation of oocyte enhances subsequent development of bovine cloned embryos[J].J Cell Physiol, 2019, 234(10):17370-17381. |
[57] | TIAN X Z, WANG F, HE C J, et al.Beneficial effects of melatonin on bovine oocytes maturation:a mechanistic approach[J].J Pineal Res, 2014, 57(3):239-247. |
[58] | SU J M, WANG Y S, XING X P, et al.Melatonin significantly improves the developmental competence of bovine somatic cell nuclear transfer embryos[J].J Pineal Res, 2015, 59(4):455-468. |
[59] | 武秀香.中国南方黄牛系统地位、抗热特性及HSP70-1、SCD1和DGAT1基因的遗传效应研究[D].扬州:扬州大学, 2011.WU X X.Phenogenetic status and heat-resistance characters of Chinese southern cattle and genetic effects of HSP70-l, SCD1 and DGAT1 gene on the corresponding traits[D].Yangzhou:Yangzhou University, 2011.(in Chinese) |
[60] | 吴珑韬.中国荷斯坦奶牛HSP70-1基因多态性与耐热性能相关性分析[D].福州:福建农林大学, 2015.WU L T.Association of HSP70-1 polymorphisms and relationship with thermal tolerance in Chinese Hostein cows[D].Fuzhou:Fujian Agriculture and Forestry University, 2015.(in Chinese) |
[61] | STAMPERNA K, GIANNOULIS T, DOVOLOU E, et al.Heat shock protein 70 improves in vitro embryo yield and quality from heat stressed bovine oocytes[J].Animals (Basel), 2021, 11(6):1794. |
[62] | HANSEN P J.Prospects for gene introgression or gene editing as a strategy for reduction of the impact of heat stress on production and reproduction in cattle[J].Theriogenology, 2020, 154:190-202. |
[63] | BASIRICÒ L, MORERA P, PRIMI V, et al.Cellular thermotolerance is associated with heat shock protein 70.1 genetic polymorphisms in Holstein lactating cows[J].Cell Stress Chaperones, 2011, 16(4):441-448. |
[64] | ORTEGA M S, ROCHA-FRIGONI N A S, MINGOTI G Z, et al.Modification of embryonic resistance to heat shock in cattle by melatonin and genetic variation in HSPA1L[J].J Dairy Sci, 2016, 99(11):9152-9164. |
[65] | SARLO DAVILA K M, HOWELL A, NUNEZ A, et al.Genome-wide association study identifies variants associated with hair length in Brangus cattle[J].Anim Genet, 2020, 51(5):811-814. |
[66] | CRAVEN A J, ORMANDY C J, ROBERTSON F G, et al.Prolactin signaling influences the timing mechanism of the hair follicle:analysis of hair growth cycles in prolactin receptor knockout mice[J].Endocrinology, 2001, 142(6):2533-2539. |
[67] | FOITZIK K, KRAUSE K, NIXON A J, et al.Prolactin and its receptor are expressed in murine hair follicle epithelium, show hair cycle-dependent expression, and induce Catagen[J].Am J Pathol, 2003, 162(5):1611-1621. |
[68] | SOSA F, SANTOS J E P, RAE D O, et al.Effects of the SLICK1 mutation in PRLR on regulation of core body temperature and global gene expression in liver in cattle[J].Animal, 2022, 16(5):100523. |
[69] | 热阳古·阿布拉.伊犁马及其杂交马催乳素与催乳素受体基因多态性的初步研究[D].乌鲁木齐:新疆农业大学, 2012.ABULA R.Preliminary research on polymorphisms in prolactin (PRL) and prolactin receptor (PRLR) gene of Yili horse and its hybrids[D].Urumqi:Xinjiang Agricultural University, 2012.(in Chinese) |
[70] | SOSA F, CARMICKLE A T, JIMÉNEZ-CABÁN E, et al.Inheritance of the SLICK1 allele of PRLR in cattle[J].Anim Genet, 2021, 52(6):887-890. |
[71] | CARMICKLE A T, ZAMARONI M R, PEREIRA J, et al.PSVI-19 evaluation of birth weight, weaning weight and average daily weight gain of Holstein female calves carrying the SLICK1 allele of the prolactin receptor (PRLR) gene[J].J Anim Sci, 2021, 99(S3):229-230. |
[72] | DENICOL A C, CARMICKLE A T, PEREIRA J, et al.253 Physiological responses to heat stress of Holstein heifers carrying the SLICK1 allele of the prolactin receptor (PRLR) gene[J].J Anim Sci, 2021, 99(S3):137. |
[73] | LITTLEJOHN M D, HENTY K M, TIPLADY K, et al.Functionally reciprocal mutations of the prolactin signalling pathway define hairy and slick cattle[J].Nat Commun, 2014, 5:5861. |
[74] | PORTO-NETO L R, BICKHART D M, LANDAETA-HERNANDEZ A J, et al.Convergent evolution of slick coat in cattle through truncation mutations in the prolactin receptor[J].Front Genet, 2018, 9:57. |
[1] | LI Wanjun, XU Jiehuan, HE Mengxian, KONG Yuting, ZHANG Defu, DAI Jianjun. Cytochalasin B Alleviates the Migration Disorder of Cortical Particle Caused by Vitrification in Porcine Oocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1999-2010. |
[2] | XIANG Hui, GUI Linsen, YANG Di, WEI Shihao, GONG Yanbin, SHI Yuangang, MA Yun, DAN Xingang. Research Progress on the Estrus Synchronization-fixed-timed Artificial Insemination Technology in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1412-1422. |
[3] | LAN Xinrui, ZHAO Baobao, ZHANG Bihan, LIN Xiaoyu, MA Huiming, WANG Yongsheng. Effects of β-sitosterol on Porcine Oocyte Maturation and Embryonic Development in Vitro [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1629-1637. |
[4] | WANG Xiao, ZHANG Hao, LUAN Qingjiang, LI Hui, YANG Ding, WANG Tingyue, TIAN Jing, ZHAO Meng, CHEN Lu, TIAN Rugang. A Comprehensive Review of the Impact of Cold and Heat Stress on the Physiological Parameters and Gene Expression in Beef Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 894-904. |
[5] | LI Yujun, HE Honghong, YANG Lixue, YANG Xiaogeng, LI Jian, ZHANG Huizhu. Advances in Regulation of Mammalian Embryonic Development by Mitochondrial Autophagy [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 905-912. |
[6] | ZHANG Xinrui, FU Yu, YANG Zhuo, SHEN Wenjuan, TAO Jinzhong. Study of Early Pregnancy Diagnostic Proteins in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 451-460. |
[7] | HUO Yuannan, QIU Meijia, ZHANG Jiaojiao, YANG Weirong, WANG Xianzhong. Arginine and Its Metabolites Attenuate Heat Stress-induced Apoptosis of Immature Boar Sertoli Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 587-597. |
[8] | XIAO Yimei, WANG Shengnan, XU Yuewen, HE Xiaolin, YIN Fuquan. Research on the Influence of Heat Stress on Male Reproduction [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 11-21. |
[9] | ZHANG Chenjian, LI Yinxia, DING Qiang, LIU Weijia, WANG Huili, HE Nan, WU Jiashun, CAO Shaoxian. Efficient Preparation of CRISPR/Cas9-mediated Goat SOCS2 Gene Edited Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 129-141. |
[10] | CHEN Yuetong, LIU Xiaohan, WANG Zhiyang, ZHAO Yuxin, ZHOU Tiezhong, HU Zengjin, ZHU Yue, WANG Shaohui, TIAN Mingxing, DING Siyu, QI Jingjing, YU Shengqing. Isolation, Identification, Pathogenicity and Drug Susceptibility of Mycoplasma gallisepticum from Dead Chicken Embryos in Large-scale Chicken Farms in Guangdong Province [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 290-299. |
[11] | SHEN Yingchao, DAVSHILT Toli, REN Hong, WANG Xisheng, TIAN Shuyue, DU Ming, DUGARJAVIIN Manglai, BOU Gerelchimeg. Differential Expression of Oocyte Development-related Hormone and Growth Factor Receptors in Equine Expanded and Compact Cumulus-oocyte Complexes [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3735-3744. |
[12] | MENG Lu, HU Haiyan, DONG Lei, ZHENG Nan, WANG Jiaqi. Influence of Dairy Farm Environment on Mastitis Milk Microbiota via SourceTracker [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3872-3883. |
[13] | ZHENG Gang, LIAN Ling. Research Progress of Key Regulatory Gene DMRT1 in Chicken Sex Determination and Differentiation [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3152-3163. |
[14] | XU Xi, YANG Baigao, ZHANG Hang, FENG Xiaoyi, HAO Haisheng, DU Weihua, ZHU Huabin, ZHANG Peipei, ZHAO Xueming. Effects of NMN on Lipid Droplet Content and Cryopreservation Effect of Bovine Oocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3348-3357. |
[15] | ZHAO Wanli, CAO Qiqi, YANG Yue, DENG Zhaoju, XU Chuang. The Interaction between Gastrointestinal Microbiota and Mucosal Immunity in Health of Perinatal Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2751-2760. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||