[1] |
ENE A C, PARK S, EDELMANN W, et al. Caspase 9 is constitutively activated in mouse oocytes and plays a key role in oocyte elimination during meiotic prophase progression[J]. Dev Biol, 2013, 377(1):213-223.
|
[2] |
ZHANG H, LIU K. Cellular and molecular regulation of the activation of mammalian primordial follicles:somatic cells initiate follicle activation in adulthood[J]. Hum Reprod Update, 2015, 21(6):779-786.
|
[3] |
VAN DEN BERG M M J, VAN MAARLE M C, VAN WELY M, et al. Genetics of early miscarriage[J]. Biochim Biophys Acta, 2012, 1822(12):1951-1959.
|
[4] |
ROTH Z. Symposium review:reduction in oocyte developmental competence by stress is associated with alterations in mitochondrial function[J]. J Dairy Sci, 2018, 101(4):3642-3654.
|
[5] |
JONES K T, LANE S I R. Chromosomal, metabolic, environmental, and hormonal origins of aneuploidy in mammalian oocytes[J]. Exp Cell Res, 2012, 318(12):1394-1399.
|
[6] |
ZHU J Q, LIU J H, LIANG X W, et al. Heat stress causes aberrant DNA methylation of H19 and Igf-2r in mouse blastocysts[J]. Mol Cells, 2008, 25(2):211-215.
|
[7] |
KALISCH-SMITH J I, MORITZ K M. Detrimental effects of alcohol exposure around conception:putative mechanisms[J]. Biochem Cell Biol, 2018, 96(2):107-116.
|
[8] |
KARUPUTHULA N B, CHATTOPADHYAY R, CHAKRAVARTY B, et al. Oxidative status in granulosa cells of infertile women undergoing IVF[J]. Syst Biol Reprod Med, 2013, 59(2):91-98.
|
[9] |
BREM R, HALL J. XRCC1 is required for DNA single-strand break repair in human cells[J]. Nucleic Acids Res, 2005, 33(8):2512-2520.
|
[10] |
KUZMINOV A. Single-strand interruptions in replicating chromosomes cause double-strand breaks[J]. Proc Natl Acad Sci U S A, 2001, 98(15):8241-8246.
|
[11] |
HANOUX V, PAIRAULT C, BAKALSKA M, et al. Caspase-2 involvement during ionizing radiation-induced oocyte death in the mouse ovary[J]. Cell Death Differ, 2007, 14(4):671-681.
|
[12] |
KERR J B, BROGAN L, MYERS M, et al. The primordial follicle reserve is not renewed after chemical or γ-irradiation mediated depletion[J]. Reproduction, 2012, 143(4):469-476.
|
[13] |
GOVINDARAJ V, KRISHNAGIRI H, CHAKRABORTY P, et al. Age-related changes in gene expression patterns of immature and aged rat primordial follicles[J]. Syst Biol Reprod Med, 2017, 63(1):37-48.
|
[14] |
PAN H, O'BRIEN M J, WIGGLESWORTH K, et al. Transcript profiling during mouse oocyte development and the effect of gonadotropin priming and development in vitro[J]. Dev Biol, 2005, 286(2):493-506.
|
[15] |
JAROUDI S, KAKOUROU G, CAWOOD S, et al. Expression profiling of DNA repair genes in human oocytes and blastocysts using microarrays[J]. Hum Reprod, 2009, 24(10):2649-2655.
|
[16] |
ZENG F Y, BALDWIN D A, SCHULTZ R M. Transcript profiling during preimplantation mouse development[J]. Dev Biol, 2004, 272(2):483-496.
|
[17] |
WANG S F, KOU Z H, JING Z Y, et al. Proteome of mouse oocytes at different developmental stages[J]. Proc Natl Acad Sci U S A, 2010, 107(41):17639-17644.
|
[18] |
CALDECOTT K W. DNA single-strand break repair[J]. Exp Cell Res, 2014, 329(1):2-8.
|
[19] |
DAVID S S, O'SHEA V L, KUNDU S. Base-excision repair of oxidative DNA damage[J]. Nature, 2007, 447(7147):941-950.
|
[20] |
TEBBS R S, FLANNERY M L, MENESES J J, et al. Requirement for the Xrcc 1 DNA base excision repair gene during early mouse development[J]. Dev Biol, 1999, 208(2):513-529.
|
[21] |
LEE Y, KATYAL S, LI Y, et al. The genesis of cerebellar interneurons and the prevention of neural DNA damage require XRCC1[J]. Nat Neurosci, 2009, 12(8):973-980.
|
[22] |
TEBBS R S, THOMPSON L H, CLEAVER J E. Rescue of Xrcc 1 knockout mouse embryo lethality by transgene-complementation[J]. DNA Repair (Amst), 2003, 2(12):1405-1417.
|
[23] |
ZHAO K, SUN X X, ZHENG C H, et al. Enhancement of Xrcc 1-mediated base excision repair improves the genetic stability and pluripotency of iPSCs[J]. Sci Bull (Beijing), 2022, 67(11):1126-1130.
|
[24] |
THOMPSON L H, WEST M G. XRCC1 keeps DNA from getting stranded[J]. Mutat Res, 2000, 459(1):1-18.
|
[25] |
VIDAL A E, BOITEUX S, HICKSON I D, et al. XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein-protein interactions[J]. EMBO J, 2001, 20(22):6530-6539.
|
[26] |
AKBARI M, VISNES T, KROKAN H E, et al. Mitochondrial base excision repair of uracil and AP sites takes place by single-nucleotide insertion and long-patch DNA synthesis[J]. DNA Repair (Amst), 2008, 7(4):605-616.
|
[27] |
LIU P F, QIAN L M, SUNG J S, et al. Removal of oxidative DNA damage via FEN1-dependent long-patch base excision repair in human cell mitochondria[J]. Mol Cell Biol, 2008, 28(16):4975-4987.
|
[28] |
ZHU J Q, LIU Y, ZHANG J H, et al. Cadmium exposure of female mice impairs the meiotic maturation of oocytes and subsequent embryonic development[J]. Toxicol Sci, 2018, 164(1):289-299.
|
[29] |
BAVISTER B D, SQUIRRELL J M. Mitochondrial distribution and function in oocytes and early embryos[J]. Hum Reprod, 2000, 15 Suppl 2:189-198.
|
[30] |
SMITH T B, DUN M D, SMITH N D, et al. The presence of a truncated base excision repair pathway in human spermatozoa that is mediated by OGG1[J]. J Cell Sci, 2013, 126(Pt 6):1488-1497.
|
[31] |
WOSSIDLO M, ARAND J, SEBASTIANO V, et al. Dynamic link of DNA demethylation, DNA strand breaks and repair in mouse zygotes[J]. EMBO J, 2010, 29(11):1877-1888.
|
[32] |
LORD T, AITKEN R J. Fertilization stimulates 8-hydroxy-2'-deoxyguanosine repair and antioxidant activity to prevent mutagenesis in the embryo[J]. Dev Biol, 2015, 406(1):1-13.
|
[33] |
FLACH G, JOHNSON M H, BRAUDE P R, et al. The transition from maternal to embryonic control in the 2-cell mouse embryo[J]. EMBO J, 1982, 1(6):681-686.
|
[34] |
SEAH M K Y, MESSERSCHMIDT D M. From germline to soma:epigenetic dynamics in the mouse preimplantation embryo[J]. Curr Top Dev Biol, 2018, 128:203-235.
|
[35] |
MESSERSCHMIDT D M, KNOWLES B B, SOLTER D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos[J]. Genes Dev, 2014, 28(8):812-828.
|
[36] |
HOUSE N C M, KOCH M R, FREUDENREICH C H. Chromatin modifications and DNA repair:beyond double-strand breaks[J]. Front Genet, 2014, 5:296.
|
[37] |
LADSTÄTTER S, TACHIBANA-KONWALSKI K. A surveillance mechanism ensures repair of DNA lesions during zygotic reprogramming[J]. Cell, 2016, 167(7):1774-1787.e13.
|
[38] |
MAYER W, NIVELEAU A, WALTER J, et al. Demethylation of the zygotic paternal genome[J]. Nature, 2000, 403(6769):501-502.
|
[39] |
OSWALD J, ENGEMANN S, LANE N, et al. Active demethylation of the paternal genome in the mouse zygote[J]. Curr Biol, 2000, 10(8):475-478.
|