Acta Veterinaria et Zootechnica Sinica ›› 2023, Vol. 54 ›› Issue (2): 443-450.doi: 10.11843/j.issn.0366-6964.2023.02.003
• REVIEW • Previous Articles Next Articles
YANG Xiaogeng1,3, ZHANG Huizhu3, LI Jian1,2,3, XIANG Hua3, HE Honghong1,2,3*
Received:
2022-09-05
Online:
2023-02-23
Published:
2023-02-21
CLC Number:
YANG Xiaogeng, ZHANG Huizhu, LI Jian, XIANG Hua, HE Honghong. Research Progress of the DNA Methylation in Mammalian Oocyte and Early Embryo Development[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 443-450.
[1] | BERNSTEIN B E, MEISSNER A, LANDER E S.The mammalian epigenome[J].Cell, 2007, 128(4):669-681. |
[2] | DELCUVE G P, RASTEGAR M, DAVIE J R.Epigenetic control[J].J Cell Physiol, 2009, 219(2):243-250. |
[3] | 甘麦邻, 杨大洪, 谭 娅, 等.环境因素引起的哺乳动物跨代DNA甲基化修饰现象[J].畜牧兽医学报, 2017, 48(12):2225-2231.GAN M L, YANG D H, TAN Y, et al.The study of influence of environment on transgenerational inheritance of DNA methylation in mammals[J].Acta Veterinaria et Zootechnica Sinica, 2017, 48(12):2225-2231.(in Chinese) |
[4] | NISHIYAMA A, NAKANISHI M.Navigating the DNA methylation landscape of cancer[J].Trends Genet, 2021, 37(11):1012-1027. |
[5] | HALUŠKOVA J, HOLEČKOVÁ B, STANIČOVÁ J.DNA methylation studies in cattle[J].J Appl Genet, 2021, 62(1):121-136. |
[6] | XIE S, QIAN C M.The growing complexity of UHRF1-Mediated maintenance DNA methylation[J].Genes (Basel), 2018, 9(12):600. |
[7] | SCHVBELER D.Function and information content of DNA methylation[J].Nature, 2015, 517(7534):321-326. |
[8] | REN H L, TAYLOR R B, DOWNING T L, et al.Locally correlated kinetics of post-replication DNA methylation reveals processivity and region specificity in DNA methylation maintenance[J].J Roy Soc Interface, 2022, 19(195):20220415. |
[9] | MING X, ZHANG Z Q, ZOU Z N, et al.Kinetics and mechanisms of mitotic inheritance of DNA methylation and their roles in aging-associated methylome deterioration[J].Cell Res, 2020, 30(11):980-996. |
[10] | GUO H S, ZHU P, YAN L Y, et al.The DNA methylation landscape of human early embryos[J].Nature, 2014, 511(7511):606-610. |
[11] | SMITH Z D, CHAN M M, MIKKELSEN T S, et al.A unique regulatory phase of DNA methylation in the early mammalian embryo[J].Nature, 2012, 484(7394):339-344. |
[12] | UYAL F, CINAR O, CAN A.Knockdown of Dnmt1 and Dnmt3a gene expression disrupts preimplantation embryo development through global DNA methylation[J].J Assist Reprod Genet, 2021, 38(12):3135-3144. |
[13] | ZHOU X F, HE Y T, LI N, et al.DNA methylation mediated RSPO2 to promote follicular development in mammals[J].Cell Death Dis, 2021, 12(7):653. |
[14] | MAUNAKEA A K, NAGARAJAN R P, BILENKY M, et al.Conserved role of intragenic DNA methylation in regulating alternative promoters[J].Nature, 2010, 466(7303):253-257. |
[15] | SENDŽIKAIT[AKE·] G, KELSEY G.The role and mechanisms of DNA methylation in the oocyte[J].Essays Biochem, 2019, 63(6):691-705. |
[16] | ZHANG J, HAO L L, WEI Q, et al.TET3 overexpression facilitates DNA reprogramming and early development of bovine SCNT embryos[J].Reproduction, 2020:160(3) 379-391. |
[17] | NISHIYAMA A, MULHOLLAND C B, BULTMANN S, et al.Two distinct modes of DNMT1 recruitment ensure stable maintenance DNA methylation[J].Nat Commun, 2020, 11(1):1222. |
[18] | PETRYK N, BULTMANN S, BARTKE T, et al.Staying true to yourself:mechanisms of DNA methylation maintenance in mammals[J].Nucl Acids Res, 2021, 49(6):3020-3032. |
[19] | MAENOHARA S, UNOKI M, TOH H, et al.Role of UHRF1 in de novo DNA methylation in oocytes and maintenance methylation in preimplantation embryos[J].PLoS Genet, 2017, 13(10):e1007042. |
[20] | 李 秦.抗坏血酸在牦牛卵母细胞和体外受精胚胎DNA甲基化调控中的应用[D].兰州:甘肃农业大学, 2020.LI Q.Application of ascorbic acid in the regulation of DNA methylation in yak oocytes and IVF embryos[D].Lanzhou:Gansu Agricultural University, 2020.(in Chinese) |
[21] | LYKO F.The DNA methyltransferase family:a versatile toolkit for epigenetic regulation[J].Nat Rev Genet, 2018, 19(2):81-92. |
[22] | GOLL M G, KIRPEKAR F, MAGGERT K A, et al.Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2[J].Science, 2006, 311(5759):395-398. |
[23] | 王倩倩.双加氧酶Tet对DNA甲基化修饰的影响及相关调控机制研究[D].北京:中国农业大学, 2018.WANG Q Q.Effects of Tet dioxygenases on DNA methylation and related regulatory mechanisms[D].Beijing:China Agricultural University, 2018.(in Chinese) |
[24] | ITO T, KUBIURA-ICHIMARU M, MURAKAMI Y, et al.DNMT1 regulates the timing of DNA methylation by DNMT3 in an enzymatic activity-dependent manner in mouse embryonic stem cells[J].PLoS One, 2022, 17(1):e0262277. |
[25] | CHEN Z Y, ZHANG Y.Role of mammalian DNA methyltransferases in development[J].Annu Rev Biochem, 2020, 89:135-158. |
[26] | YAGI M, KABATA M, TANAKA A, et al.Identification of distinct loci for de novo DNA methylation by DNMT3A and DNMT3B during mammalian development[J].Nat Commun, 2020, 11(1):3199. |
[27] | LI Y L, CHEN X, LU C.The interplay between DNA and histone methylation:molecular mechanisms and disease implications[J].EMBO Rep, 2021, 22(5):e51803. |
[28] | BARAU J, TEISSANDIER A, ZAMUDIO N, et al.The DNA methyltransferase DNMT3C protects male germ cells from transposon activity[J].Science, 2016, 354(6314):909-912. |
[29] | UYSAL F, AKKOYUNLU G, OZTURK S.Dynamic expression of DNA methyltransferases (DNMTs) in oocytes and early embryos[J].Biochimie, 2015, 116:103-113. |
[30] | ZHAO X B, CHEN Y P, TAN M, et al.Extracellular matrix stiffness regulates DNA methylation by PKCα-dependent nuclear transport of DNMT3L[J].Adv Healthc Mater, 2021, 10(16):2100821. |
[31] | TOMIZAWA S I, NOWACKA-WOSZUK J, KELSEY G.DNA methylation establishment during oocyte growth:mechanisms and significance[J].Int J Dev Biol, 2012, 56(10-12):867-875. |
[32] | GREENBERG M V C.Get out and stay out:new insights into DNA methylation reprogramming in mammals[J].Front Cell Dev Biol, 2021, 8:629068. |
[33] | WU X J, ZHANG Y.TET-mediated active DNA demethylation:mechanism, function and beyond[J].Nat Rev Genet, 2017, 18(9):517-534. |
[34] | FICZ G, BRANCO M R, SEISENBERGER S, et al.Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation[J].Nature, 2011, 473(7347):398-402. |
[35] | CAO J Z, LIU H, WICKREMA A, et al.HIF-1 directly induces TET3 expression to enhance 5-hmC density and induce erythroid gene expression in hypoxia[J].Blood Adv, 2020, 4(13):3053-3062. |
[36] | MATULEVICIUTE R, CUNHA P P, JOHNSON R S, et al.Oxygen regulation of TET enzymes[J].FEBS J, 2021, 288(24):7143-7161. |
[37] | GU T P, GUO F, YANG H, et al.The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes[J].Nature, 2011, 477(7366):606-610. |
[38] | CHENG H, ZHANG J, ZHANG S, et al.Tet3 is required for normal in vitro fertilization preimplantation embryos development of bovine[J].Mol Reprod Dev, 2019, 86(3):298-307. |
[39] | YAMAZAKI T, HATANO Y, TANIGUCHI R, et al.Editing DNA methylation in mammalian embryos[J].Int J Mol Sci, 2020, 21(2):637. |
[40] | SAITOU M, KAGIWADA S, KURIMOTO K.Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells[J]. Development, 2012, 139(1):15-31. |
[41] | BRANCO M R, ODA M, REIK W.Safeguarding parental identity:Dnmt1 maintains imprints during epigenetic reprogramming in early embryogenesis[J].Genes Dev, 2008, 22(12):1567-1571. |
[42] | WU H, ZHANG Y.Reversing DNA methylation:mechanisms, genomics, and biological functions[J].Cell, 2014, 156(1-2):45-68. |
[43] | SEISENBERGER S, PEAT J R, REIK W.Conceptual links between DNA methylation reprogramming in the early embryo and primordial germ cells[J].Curr Opin Cell Biol, 2013, 25(3):281-288. |
[44] | YAKOVLEV A F.Epigenetic effects in livestock breeding[J].Russ J Genet, 2018, 54(8):897-909. |
[45] | DE FELICI M.Nuclear reprogramming in mouse primordial germ cells:epigenetic contribution[J].Stem Cells Int, 2011, 2011:425863. |
[46] | HIURA H, OBATA Y, KOMIYAMA J, et al.Oocyte growth-dependent progression of maternal imprinting in mice[J].Genes Cells, 2006, 11(4):353-361. |
[47] | LUCIFERO D, MANN M R W, BARTOLOMEI M S, et al.Gene-specific timing and epigenetic memory in oocyte imprinting[J]. Hum Mol Genet, 2004, 13(8):839-849. |
[48] | SWALES A K E, SPEARS N.Genomic imprinting and reproduction[J].Reproduction, 2005, 130(4):389-399. |
[49] | SMALLWOOD S A, TOMIZAWA S I, KRUEGER F, et al.Dynamic CpG island methylation landscape in oocytes and preimplantation embryos[J].Nat Genet, 2011, 43(8):811-814. |
[50] | SEISENBERGER S, ANDREWS S, KRUEGER F, et al.The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells[J].Mol Cell, 2012, 48(6):849-862. |
[51] | UYSAL F, OZTURK S, AKKOYUNLU G.DNMT1, DNMT3A and DNMT3B proteins are differently expressed in mouse oocytes and early embryos[J].J Mol Histol, 2017, 48(5-6):417-426. |
[52] | KOBAYASHI H, SAKURAI T, IMAI M, et al.Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks[J].PLoS Genet, 2012, 8(1):e1002440. |
[53] | OKAE H, CHIBA H, HIURA H, et al.Genome-wide analysis of DNA methylation dynamics during early human development[J]. PLoS Genet, 2014, 10(12):e1004868. |
[54] | VESELOVSKA L, SMALLWOOD S A, SAADEH H, et al.Deep sequencing and de novo assembly of the mouse oocyte transcriptome define the contribution of transcription to the DNA methylation landscape[J].Genome Biol, 2015, 16:209. |
[55] | SINGH V B, SRIBENJA S, WILSON K E, et al.Blocked transcription through KvDMR1 results in absence of methylation and gene silencing resembling Beckwith-Wiedemann syndrome[J].Development, 2017, 144(10):1820-1830. |
[56] | GREENBERG M V C, BOURC'HIS D.The diverse roles of DNA methylation in mammalian development and disease[J].Nat Rev Mol Cell Biol, 2019, 20(10):590-607. |
[57] | RACEDO S E, WRENZYCKI C, LEPIKHOV K, et al.Epigenetic modifications and related mRNA expression during bovine oocyte in vitro maturation[J].Reprod Fertil Dev, 2009, 21(6):738-748. |
[58] | LIANG Y, FU X W, LI J J, et al.DNA methylation pattern in mouse oocytes and their in vitro fertilized early embryos:effect of oocyte vitrification[J].Zygote, 2014, 22(2):138-145. |
[59] | CANOVAS S, IVANOVA E, HAMDI M, et al.Culture medium and sex drive epigenetic reprogramming in preimplantation bovine embryos[J].Int J Mol Sci, 2021, 22(12):6426. |
[60] | XU Q H, XIE W.Epigenome in early mammalian development:inheritance, reprogramming and establishment[J].Trends Cell Biol, 2018, 28(3):237-253. |
[61] | WANG X G, BHANDARI R K.DNA methylation dynamics during epigenetic reprogramming of medaka embryo[J]. Epigenetics, 2019, 14(6):611-622. |
[62] | SHEN L, INOUE A, HE J, et al.Tet3 and DNA replication mediate demethylation of both the maternal and paternal genomes in mouse zygotes[J].Cell Stem Cell, 2014, 15(4):459-471. |
[63] | 刘青青, 郑丽明, 刘红亮, 等.小鼠早期胚胎发育过程中的DNA去甲基化[J].畜牧兽医学报, 2013, 44(4):501-507.LIU Q Q, ZHENG L M, LIU H L, et al.DNA demethylation in mouse pre-implantation embryos[J].Acta Veterinaria et Zootechnica Sinica, 2013, 44(4):501-507.(in Chinese) |
[64] | ZHU P, GUO H S, REN Y X, et al.Single-cell DNA methylome sequencing of human preimplantation embryos[J].Nat Genet, 2018, 50(1):12-19. |
[65] | GUO F, LI X L, LIANG D, et al.Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote[J].Cell Stem Cell, 2014, 15(4):447-459. |
[66] | ARAND J, REIJO PERA R A, WOSSIDLO M.Reprogramming of DNA methylation is linked to successful human preimplantation development[J].Histochem Cell Biol, 2021, 156(3):197-207. |
[67] | IVANOVA E, CANOVAS S, GARCIA-MARTÍNEZ S, et al.DNA methylation changes during preimplantation development reveal inter-species differences and reprogramming events at imprinted genes[J].Clin Epigenet, 2020, 12(1):64. |
[68] | 甘建宇, 张 芯, 蔡更元, 等.DNA甲基化在猪胚胎发育过程中的研究进展[J].畜牧兽医学报, 2022, 53(10):3287-3295.GAN J Y, ZHANG X, CAI G Y, et al.Research progress of DNA methylation during porcine embryonic development[J].Acta Veterinaria et Zootechnica Sinica, 2022, 53(10):3287-3295.(in Chinese) |
[69] | XIONG X R, FU M, LAN D L, et al.Yak response to high-altitude hypoxic stress by altering mRNA expression and DNA methylation of hypoxia-inducible factors[J].Anim Biotechnol, 2015, 26(3):222-229. |
[70] | KAPITSINOU P P, LIU Q D, UNGER T L, et al.Hepatic HIF-2 regulates erythropoietic responses to hypoxia in renal anemia[J]. Blood, 2010, 116(16):3039-3048. |
[71] | BENNEMANN J, GROTHMANN H, WRENZYCKI C.Reduced oxygen concentration during in vitro oocyte maturation alters global DNA methylation in the maternal pronucleus of subsequent zygotes in cattle[J].Mol Reprod Dev, 2018, 85(11):849-857. |
[72] | CAO Y M, LI M R, LIU F, et al.Deletion of maternal UHRF1 severely reduces mouse oocyte quality and causes developmental defects in preimplantation embryos[J].FASEB J, 2019, 33(7):8294-8305. |
[73] | BAKHTARI A, ROSS P J.DPPA3 prevents cytosine hydroxymethylation of the maternal pronucleus and is required for normal development in bovine embryos[J].Epigenetics, 2014, 9(9):1271-1279. |
[74] | HAN L S, REN C, ZHANG J, et al.Differential roles of Stella in the modulation of DNA methylation during oocyte and zygotic development[J].Cell Discov, 2019, 5:9. |
[75] | FUNAKI S, NAKAMURA T, NAKATANI T, et al.Inhibition of maintenance DNA methylation by Stella[J].Biochem Biophys Res Commun, 2014, 453(3):455-460. |
[1] | ZHANG Wei, PAN Zhihao, FANG Fugui. Advances in Epigenetic Regulation of the Onset of Puberty in Female Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1875-1882. |
[2] | LI Wanjun, XU Jiehuan, HE Mengxian, KONG Yuting, ZHANG Defu, DAI Jianjun. Cytochalasin B Alleviates the Migration Disorder of Cortical Particle Caused by Vitrification in Porcine Oocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1999-2010. |
[3] | LAN Xinrui, ZHAO Baobao, ZHANG Bihan, LIN Xiaoyu, MA Huiming, WANG Yongsheng. Effects of β-sitosterol on Porcine Oocyte Maturation and Embryonic Development in Vitro [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1629-1637. |
[4] | LI Yujun, HE Honghong, YANG Lixue, YANG Xiaogeng, LI Jian, ZHANG Huizhu. Advances in Regulation of Mammalian Embryonic Development by Mitochondrial Autophagy [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 905-912. |
[5] | SHEN Qi, WANG Kai, ZHAO Zhenjian, CHEN Dong, YU Yang, CUI Shengdi, WANG Junge, CHEN Ziyang, WU Pingxian, TANG Guoqing. Regulation of NO Concentration by NOS2 Gene DNA Methylation Editing Affects the Expression of Muscle Development Pathway Genes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 984-994. |
[6] | RU Meng, ZENG Wenhui, PENG Jianling, ZENG Qingjie, YIN Chao, CUI Yong, WEI Qing, LIANG Haiping, XIE Xianhua, HUANG Jianzhen. Research Progress on Follicles Development of Hens and Its Epigenetic Regulatory Mechanism [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3613-3622. |
[7] | SHEN Yingchao, DAVSHILT Toli, REN Hong, WANG Xisheng, TIAN Shuyue, DU Ming, DUGARJAVIIN Manglai, BOU Gerelchimeg. Differential Expression of Oocyte Development-related Hormone and Growth Factor Receptors in Equine Expanded and Compact Cumulus-oocyte Complexes [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3735-3744. |
[8] | XU Xi, YANG Baigao, ZHANG Hang, FENG Xiaoyi, HAO Haisheng, DU Weihua, ZHU Huabin, ZHANG Peipei, ZHAO Xueming. Effects of NMN on Lipid Droplet Content and Cryopreservation Effect of Bovine Oocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3348-3357. |
[9] | ZHANG Hang, YANG Baigao, XU Xi, FENG Xiaoyi, DU Weihua, HAO Haisheng, ZHU Huabin, ZHANG Peipei, ZHAO Xueming. Research Progress on the Mechanism of Heat Stress Affecting the Development of Dairy Cow Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2692-2700. |
[10] | ZHU Jiaqiao, CHENG Laiyang, CAO Jiangqin, ZHU Min, LI Junwei, JU Huimin, LIU Zongping. Preliminary Study on the Location and Function of XRCC1 in Oocyte and Early Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 2126-2133. |
[11] | ZHANG Peipei, HAO Haisheng, DU Weihua, ZHU Huabin, LI Shujing, YU Wenli, ZHAO Xueming. A Review of Optimization of in vitro Maturation System of OPU Oocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1359-1369. |
[12] | JIN Meilin, LI Taotao, SUN Dongxiao, WEI Caihong. Research Progress of Epigenetic Regulation in Fat Deposition Mechanism of Livestock and Poultry [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 855-867. |
[13] | XIAO Shiyu, LU Chang, MA Juan, WANG Chuang, QI Meiyu, YAO Yuchang. Effects of N-acetylcysteine [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1046-1057. |
[14] | CHEN Siying, SUN Yawen, LI Kang, LIU Shuo, HAO Haisheng, DU Weihua, ZOU Huiying, ZHU Huabin, PANG Yunwei. Application of Microfluidic Technologies in Livestock in vitro Embryo Production [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 4889-4897. |
[15] | ZHANG Chenyibo, YU Tong, REN Binbin, ZHENG Ruizhi, ZHU Wenzhi, SU Jianmin. Mechanism of Epigenetic Reprogramming of Early Animal Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 4898-4909. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||