Acta Veterinaria et Zootechnica Sinica ›› 2023, Vol. 54 ›› Issue (12): 4898-4909.doi: 10.11843/j.issn.0366-6964.2023.12.002
• REVIEW • Previous Articles Next Articles
ZHANG Chenyibo, YU Tong, REN Binbin, ZHENG Ruizhi, ZHU Wenzhi, SU Jianmin*
Received:
2023-03-23
Online:
2023-12-23
Published:
2023-12-26
CLC Number:
ZHANG Chenyibo, YU Tong, REN Binbin, ZHENG Ruizhi, ZHU Wenzhi, SU Jianmin. Mechanism of Epigenetic Reprogramming of Early Animal Embryos[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 4898-4909.
[1] MALIN K,WITKOWSKA-PIȽASZEWICZ O,PAPIS K.The many problems of somatic cell nuclear transfer in reproductive cloning of mammals[J].Theriogenology,2022,189:246-254. [2] 杨小耿,张慧珠,李键,等.DNA甲基化在哺乳动物卵母细胞和早期胚胎发育中的研究进展[J].畜牧兽医学报,2023, 54(2):443-450.YANG X G,ZHANG H Z,LI J,et al.Research progress of the DNA methylation in mammalian oocyte and early embryo development[J].Acta Veterinaria et Zootechnica Sinica,2023,54(2):443-450.(in Chinese) [3] YAN R,CHENG X,GU C,et al.Dynamics of DNA hydroxymethylation and methylation during mouse embryonic and germline development[J].Nat Genet,2023,55(1):130-143. [4] RICHARD ALBERT J,AU YEUNG W K,TORIYAMA K,et al.Maternal DNMT3A-dependent de novo methylation of the paternal genome inhibits gene expression in the early embryo[J].Nat Commun,2020,11(1):5417. [5] XU R M,LI C,LIU X Y,et al.Insights into epigenetic patterns in mammalian early embryos[J].Protein Cell,2021,12(1):7-28. [6] LI Y F,ZHANG Z Q,CHEN J Y,et al.Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1[J].Nature,2018,564(7734):136-140. [7] ZHANG C Y,WEN H,LIU S Y,et al.Maternal factor dppa3 activates 2C-like genes and depresses DNA methylation in mouse embryonic stem cells[J].Front Cell Dev Biol,2022,10:882671. [8] ECKERSLEY-MASLIN M A,ALDA-CATALINAS C,REIK W.Dynamics of the epigenetic landscape during the maternal-to-zygotic transition[J].Nat Rev Mol Cell Biol,2018,19(7):436-450. [9] LIU X,CHEN L,WANG T,et al.TDG is a pig-specific epigenetic regulator with insensitivity to H3K9 and H3K27 demethylation in nuclear transfer embryos[J].Stem Cell Rep,2021,16(11):2674-2689. [10] ZHANG Y,XIANG Y L,YIN Q Z,et al.Dynamic epigenomic landscapes during early lineage specification in mouse embryos[J]. Nat Genet,2018,50(1):96-105. [11] YANG H,BAI D D,LI Y H,et al.Allele-specific H3K9me3 and DNA methylation co-marked CpG-rich regions serve as potential imprinting control regions in pre-implantation embryo[J].Nat Cell Biol,2022,24(5):783-792. [12] GÓMEZ-REDONDO I,PLANELLS B,CÁNOVAS S,et al.Genome-wide DNA methylation dynamics during epigenetic reprogramming in the porcine germline[J].Clin Epigenet,2021,13(1):27. [13] IVANOVA E,CANOVAS S,GARCIA-MARTÍNEZ S,et al.DNA methylation changes during preimplantation development reveal inter-species differences and reprogramming events at imprinted genes[J].Clin Epigenet,2020,12(1):64. [14] NIEMANN H,CARNWATH J W,HERRMANN D,et al.DNA methylation patterns reflect epigenetic reprogramming in bovine embryos[J].Cell Reprogram,2010,12(1):33-42. [15] ARAND J,CHIANG H R,MARTIN D,et al.Tet enzymes are essential for early embryogenesis and completion of embryonic genome activation[J].EMBO Rep,2022,23(2):e53968. [16] CLARK S J,ARGELAGUET R,LOHOFF T,et al.Single-cell multi-omics profiling links dynamic DNA methylation to cell fate decisions during mouse early organogenesis[J].Genome Biol,2022,23(1):202. [17] 张德福,戴建军,吴彩凤,等.体细胞克隆技术及其存在的问题[J].上海农业学报,2016,32(3):168-171.ZHANG D F,DAI J J,WU C F,et al.Animal somatic cell cloning technique and its problems[J].Acta Agriculturae Shanghai,2016, 32(3):168-171.(in Chinese) [18] SU J M,WANG Y S,LIU Q,et al.Aberrant mRNA expression and DNA methylation levels of imprinted genes in cloned transgenic calves that died of large offspring syndrome[J].Livest Sci,2011,141(1):24-35. [19] ZENG Y,CHEN T P.DNA methylation reprogramming during mammalian development[J].Genes (Basel),2019,10(4):257. [20] SHILATIFARD A.Molecular implementation and physiological roles for histone H3 lysine 4(H3K4) methylation[J].Curr Opin Cell Biol,2008,20(3):341-348. [21] RUTHENBURG A J,ALLIS C D,WYSOCKA J.Methylation of lysine 4 on histone H3:intricacy of writing and reading a single epigenetic mark[J].Mol Cell,2007,25(1):15-30. [22] ANSARI K I,MANDAL S S.Mixed lineage leukemia:roles in gene expression,hormone signaling and mRNA processing[J]. FEBS J, 2010,277(8):1790-1804. [23] LI Y J,HAN J M,ZHANG Y B,et al.Structural basis for activity regulation of MLL family methyltransferases[J]. Nature,2016, 530(7591):447-452. [24] DAHL J A,JUNG I,AANES H,et al.Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition[J].Nature,2016,537(7621):548-552. [25] YAMAZAKI S,IKEDA S,MINAMI N.Comparative analysis of histone H3K27me3 modifications between blastocysts and somatic tissues in cattle[J].Anim Sci J,2022,93(1):e13684. [26] ZHANG B J,ZHENG H,HUANG B,et al.Allelic reprogramming of the histone modification H3K4me3 in early mammalian development[J].Nature,2016,537(7621):553-557. [27] WANG L,ZHANG J,DUAN J L,et al.Programming and inheritance of parental DNA methylomes in mammals[J].Cell,2014, 157(4):979-991. [28] DANG Y N,LUO L,SHI Y,et al.KDM5-mediated redistribution of H3K4me3 is required for oocyte-to-embryonic transition in cattle[J].Biol Reprod,2022,106(6):1059-1071. [29] HUANG J J,ZHANG H Y,WANG X L,et al.Impairment of preimplantation porcine embryo development by histone demethylase KDM5B knockdown through disturbance of bivalent H3K4me3-H3K27me3 modifications[J].Biol Reprod,2015, 92(3):72. [30] LIU F M,WU D J,WANG X D.Roles of CTCF in conformation and functions of chromosome[J].Semin Cell Dev Biol,2019,90: 168-173. [31] HUANG X,GAO X D,LI W Y,et al.Stable H3K4me3 is associated with transcription initiation during early embryo development[J].Bioinformatics,2019,35(20):3931-3936. [32] LIU X Y.,WANG C F,LIU W Q,et al.Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos[J].Nature,2016,537(7621):558-562. [33] LU S C,MATO J M.S-adenosylmethionine in cell growth,apoptosis and liver cancer[J].J Gastroenterol Hepatol,2008,23(S1): S73-S77. [34] LI C Z,GUI G,ZHANG L,et al.Overview of methionine adenosyltransferase 2A (MAT2A) as an anticancer target:structure, function, and inhibitors[J].J Med Chem,2022,65(14):9531-9547. [35] SUN H Z,KANG J,SU J M,et al.Methionine adenosyltransferase 2A regulates mouse zygotic genome activation and morula to blastocyst transition[J].Biol Reprod,2019,100(3):601-617. [36] ZHANG Z,NIKOLAI B C,GATES L A,et al.Crosstalk between histone modifications indicates that inhibition of arginine methyltransferase CARM1 activity reverses HIV latency[J].Nucleic Acids Res,2017,45(16):9348-9360. [37] SUN H Z,SU J M,WU T,et al.CARM1 is heterogeneous in mouse four-cell embryo and important to blastocyst development[J]. Reproduction,2020,159(1):91-104. [38] ARNOLD D R,CORRȆA C A P,LORENA L L G,et al.Supplementation of fetal bovine serum alters histone modification H3R26me2 during preimplantation development of in vitro produced bovine embryos[J].Pesqui Vet Bras,2015,35(7):605-612. [39] CAO Z B,TONG X,YIN H Q,et al.Histone arginine methyltransferase CARM1-mediated H3R26me2 is essential for morula-to-blastocyst transition in pigs[J].Front Cell Dev Biol,2021,9:678282. [40] HUPALOWSKA A,JEDRUSIK A,ZHU M,et al.CARM1 and paraspeckles regulate pre-implantation mouse embryo development[J]. Cell,2018,175(7):1902-1916.e13. [41] DING B,CAO Z B,HONG R Y,et al.WDR5 in porcine preimplantation embryos:expression,regulation of epigenetic modifications and requirement for early development[J].Biol Reprod,2017,96(4):758-771. [42] AOSHIMA K,INOUE E,SAWA H,et al.Paternal H3K4 methylation is required for minor zygotic gene activation and early mouse embryonic development[J].EMBO Rep,2015,16(7):803-812. [43] JAMBHEKAR A,DHALL A,SHI Y.Roles and regulation of histone methylation in animal development[J].Nat Rev Mol Cell Biol,2019,20(10):625-641. [44] KUMAR B,NAVARRO C,WINBLAD N,et al.Polycomb repressive complex 2 shields naïve human pluripotent cells from trophectoderm differentiation[J].Nat Cell Biol,2022,24(6):845-857. [45] XIE B T,ZHANG H,WEI R Y,et al.Histone H3 lysine 27 trimethylation acts as an epigenetic barrier in porcine nuclear reprogramming[J].Reproduction,2016,151(1):9-16. [46] MEI H L,KOZUKA C,HAYASHI R,et al.H2AK119ub1 guides maternal inheritance and zygotic deposition of H3K27me3 in mouse embryos[J].Nat Genet,2021,53(4):539-550. [47] BU G W,ZHU W,LIU X,et al.Coordination of zygotic genome activation entry and exit by H3K4me3 and H3K27me3 in porcine early embryos[J].Genome Res,2022,32(8):1487-1501. [48] GAO Y,HYTTEL P,HALL V J.Regulation of H3K27me3 and H3K4me3 during early porcine embryonic development[J].Mol Reprod Dev,2010,77(6):540-549. [49] RONG Y,ZHU Y Z,YU J L,et al.USP16-mediated histone H2A lysine-119 deubiquitination during oocyte maturation is a prerequisite for zygotic genome activation[J].Nucleic Acids Res,2022,50(10):5599-5616. [50] CHEN Z Y,DJEKIDEL M N,ZHANG Y.Distinct dynamics and functions of H2AK119ub1 and H3K27me3 in mouse preimplantation embryos[J].Nat Genet,2021,53(4):551-563. [51] AGGER K,CLOOS P A C,CHRISTENSEN J,et al.UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development[J].Nature,2007,449(7163):731-734. [52] LAN F,BAYLISS P E,RINN J L,et al.A histone H3 lysine 27 demethylase regulates animal posterior development[J].Nature, 2007, 449(7163):689-694. [53] ZHOU C,WANG Y Z,ZHANG J C,et al.H3K27me3 is an epigenetic barrier while KDM6A overexpression improves nuclear reprogramming efficiency[J].FASEB J,2019,33(3):4638-4652. [54] WANG C F,LIU X Y,GAO Y W,et al.Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development[J].Nat Cell Biol,2018,20(5):620-631. [55] WANG L J,LIU L X,WANG Y S,et al.Aberrant epigenetic reprogramming in the first cell cycle of bovine somatic cell nuclear transfer embryos[J].Cell Reprogram,2021,23(2):99-107. [56] SOUFI A,DONAHUE G,ZARET K S.Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome[J].Cell,2012,151(5):994-1004. [57] BECKER J S,NICETTO D,ZARET K S.H3K9me3-dependent heterochromatin:barrier to cell fate changes[J].Trends Genet,2016,32(1):29-41. [58] TACHIBANA M,SUGIMOTO K,NOZAKI M,et al.G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis[J].Genes Dev,2002,16(14):1779-1791. [59] MATOBA S,LIU Y T,LU F L,et al.Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation[J].Cell,2014,159(4):884-895. [60] LIU X,WANG Y Z,GAO Y P,et al.H3K9 demethylase KDM4E is an epigenetic regulator for bovine embryonic development and a defective factor for nuclear reprogramming[J].Development,2018,145(4):dev158261. [61] ANTONY J,OBACK F,CHAMLEY L W,et al.Transient JMJD2B-mediated reduction of H3K9me3 levels improves reprogramming of embryonic stem cells into cloned embryos[J].Mol Cell Biol,2013,33(5):974-983. [62] WENG X G,CAI M M,ZHANG Y T,et al.Improvement in the in vitro development of cloned pig embryos after kdm4a overexpression and an H3K9me3 methyltransferase inhibitor treatment[J].Theriogenology,2020,146:162-170. [63] ZHANG J C,QU P X,ZHOU C,et al.MicroRNA-125b is a key epigenetic regulatory factor that promotes nuclear transfer reprogramming[J].J Biol Chem,2017,292(38):15916-15926. [64] ZHANG Y M,WANG Q Q,LIU K L,et al.Treatment of donor cells with recombinant KDM4D protein improves preimplantation development of cloned ovine embryos[J].Cytotechnology,2018,70(5):1469-1477. [65] CHUNG Y G,MATOBA S,LIU Y T,et al.Histone demethylase expression enhances human somatic cell nuclear transfer efficiency and promotes derivation of pluripotent stem cells[J].Cell Stem Cell,2015,17(6):758-766. [66] SANKAR A,LERDRUP M,MANAF A,et al.KDM4A regulates the maternal-to-zygotic transition by protecting broad H3K4me3 domains from H3K9me3 invasion in oocytes[J].Nat Cell Biol,2020,22(4):380-388. [67] LIU W Q,LIU X Y,WANG C F,et al.Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing[J].Cell Discov,2016,2:16010. [68] BURTON A,BROCHARD V,GALAN C,et al.Heterochromatin establishment during early mammalian development is regulated by pericentromeric RNA and characterized by non-repressive H3K9me3[J].Nat Cell Biol,2020,22(7):767-778. [69] XIA W K,XIE W.Rebooting the epigenomes during mammalian early embryogenesis[J].Stem Cell Rep,2020,15(6):1158-1175. [70] DANG Y N,LI S,ZHAO P P,et al.The lysine deacetylase activity of histone deacetylases 1 and 2 is required to safeguard zygotic genome activation in mice and cattle[J].Development,2022,149(11):dev200854. [71] 杨慧,张昌军,刁红录.组蛋白乙酰化与哺乳动物生殖[J].中国细胞生物学学报,2017,39(4):523-528.YANG H,ZHANG C J,DIAO H L.Histone acetylation and mammalian reproduction[J].Chinese Journal of Cell Biology,2017, 39(4):523-528.(in Chinese) [72] ZIEGLER-BIRLING C,DAUJAT S,SCHNEIDER R,et al.Dynamics of histone H3 acetylation in the nucleosome core during mouse pre-implantation development[J].Epigenetics,2016,11(8):553-562. [73] BRUNMEIR R,LAGGER S,SEISER C.Histone deacetylase HDAC1/HDAC2-controlled embryonic development and cell differentiation[J].Int J Dev Biol,2009,53(2-3):275-289. [74] DANG Y N,LI S,ZHAO P P,et al.The lysine deacetylase activity of histone deacetylases 1 and 2 is required to safeguard zygotic genome activation in mice and cattle[J].Development,2022,149(11):dev200854. [75] SANTENARD A,ZIEGLER-BIRLING C,KOCH M,et al.Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3[J].Nat Cell Biol,2010,12(9):853-862. [76] ZHOU N R,CAO Z B,WU R H,et al.Dynamic changes of histone H3 lysine 27 acetylation in pre-implantational pig embryos derived from somatic cell nuclear transfer[J].Anim Reprod Sci,2014,148(3-4):153-163. [77] ZAREI M,SHAMAGHDARI B,VAHABI Z,et al.Epigenetic reprogramming in cloned mouse embryos following treatment with DNA methyltransferase and histone deacetylase inhibitors[J].Syst Biol Reprod Med,2022,68(3):227-238. [78] MA P,SCHULTZ R M.HDAC1 and HDAC2 in mouse oocytes and preimplantation embryos:specificity versus compensation[J]. Cell Death Differ,2016,23(7):1119-1127. [79] ZHAO P P,WANG H N,WANG H,et al.Essential roles of HDAC1 and 2 in lineage development and genome-wide DNA methylation during mouse preimplantation development[J].Epigenetics,2020,15(4):369-385. [80] WANG M,CHEN Z Y,ZHANG Y.CBP/p300 and HDAC activities regulate H3K27 acetylation dynamics and zygotic genome activation in mouse preimplantation embryos[J].EMBO J,2022,41(22):e112012. [81] MING H,SUN J W,PASQUARIELLO R,et al.The landscape of accessible chromatin in bovine oocytes and early embryos[J]. Epigenetics,2021,16(3):300-312. [82] LU F L,LIU Y T,INOUE A,et al.Establishing chromatin regulatory landscape during mouse preimplantation development[J]. Cell, 2016, 165(6):1375-1388. [83] WU J Y,HUANG B,CHEN H,et al.The landscape of accessible chromatin in mammalian preimplantation embryos[J].Nature, 2016,534(7609):652-657. [84] GUO H S,HU B Q,YAN L Y,et al.DNA methylation and chromatin accessibility profiling of mouse and human fetal germ cells[J].Cell Res,2017,27(2):165-183. [85] JACHOWICZ J W,BING X Y,PONTABRY J,et al.LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo[J].Nat Genet,2017,49(10):1502-1510. [86] ISHIUCHI T,ENRIQUEZ-GASCA R,MIZUTANI E,et al.Early embryonic-like cells are induced by downregulating replication-dependent chromatin assembly[J].Nat Struct Mol Biol,2015,22(9):662-671. [87] DE IACO A,PLANET E,COLUCCIO A,et al.DUX-family transcription factors regulate zygotic genome activation in placental mammals[J].Nat Genet,2017,49(6):941-945. [88] ZHANG Y B,YANG Y,QIAO P P,et al.CHAF1b,chromatin assembly factor-1 subunit b,is essential for mouse preimplantation embryos[J].Int J Biol Macromol,2022,195:547-557. [89] GÖRISCH S M,WACHSMUTH M,TÓTH K F,et al.Histone acetylation increases chromatin accessibility[J].J Cell Sci,2005, 118(24):5825-5834. [90] DIXON J R,SELVARAJ S,YUE F,et al.Topological domains in mammalian genomes identified by analysis of chromatin interactions[J].Nature,2012,485(7398):376-380. [91] EA V,BAUDEMENT M O,LESNE A,et al.Contribution of topological domains and loop formation to 3D chromatin organization[J].Genes (Basel),2015,6(3):734-750. [92] KE Y W,XU Y N,CHEN X P,et al.3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis[J].Cell,2017,170(2):367-381.e20. [93] DU Z H,ZHENG H,HUANG B,et al.Allelic reprogramming of 3D chromatin architecture during early mammalian development[J].Nature,2017,547(7662):232-235. [94] NAGANO M,HU B,YOKOBAYASHI S,et al.Nucleome programming is required for the foundation of totipotency in mammalian germline development[J].Embo J,2022,41(13):e110600. [95] AHMED K,DEHGHANI H,RUGG-GUNN P,et al.Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo[J].PLoS One,2010,5(5):e10531. [96] LI F F,WANG D Y,SONG R G,et al.The asynchronous establishment of chromatin 3D architecture between in vitro fertilized and uniparental preimplantation pig embryos[J].Genome Biol,2020,21(1):203. [97] ZHENG H,HUANG B,ZHANG B J,et al.Resetting epigenetic memory by reprogramming of histone modifications in mammals[J].Mol Cell,2016,63(6):1066-1079. [98] BOLONDI A,KRETZMER H,MEISSNER A.Single-cell technologies:a new lens into epigenetic regulation in development[J]. Curr Opin Genet Dev,2022,76:101947. |
[1] | ZHANG Wei, PAN Zhihao, FANG Fugui. Advances in Epigenetic Regulation of the Onset of Puberty in Female Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1875-1882. |
[2] | SHEN Qi, WANG Kai, ZHAO Zhenjian, CHEN Dong, YU Yang, CUI Shengdi, WANG Junge, CHEN Ziyang, WU Pingxian, TANG Guoqing. Regulation of NO Concentration by NOS2 Gene DNA Methylation Editing Affects the Expression of Muscle Development Pathway Genes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 984-994. |
[3] | JIN Meilin, LI Taotao, SUN Dongxiao, WEI Caihong. Research Progress of Epigenetic Regulation in Fat Deposition Mechanism of Livestock and Poultry [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 855-867. |
[4] | YANG Xiaogeng, ZHANG Huizhu, LI Jian, XIANG Hua, HE Honghong. Research Progress of the DNA Methylation in Mammalian Oocyte and Early Embryo Development [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 443-450. |
[5] | GAN Jianyu, ZHANG Xin, CAI Gengyuan, HONG Linjun, HUANG Sixiu. Research Progress of DNA Methylation during Porcine Embryonic Development [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3287-3295. |
[6] | LI Xiong, TIAN Niannian, SONG Linjin, CHEN Chen, XU Houqiang. Effects of 5-Aza-dC on MyoD1 Promoter Methylation and mRNA Expression in Bovine Myoblasts [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(9): 2439-2451. |
[7] | LIU Xiaoqian, JIN Lanjie, DONG Yanqiu, LI Dongjie, ZHANG Cui, GU Shukai, LI Shijie. DNA Methylation Regulate the Genomic Imprinting of AQP1 Gene Specific in Bovine Placenta [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(8): 2181-2189. |
[8] | XUE Qian, LI Guohui, YIN Jianmei, ZHANG Huiyong, ZHOU Chenghao, ZHU Yunfen, XING Weijie, SU Yijun, ZOU Jianmin, HAN Wei. Screening of Genes with Differential Methylated CpG Island Related to Inbreeding Depression of Chicken Reproduction [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(4): 943-953. |
[9] | LIU Yumeng, MA Yanyan, JIANG Haixu, ZHANG Xinyang, WU Chunyan, CHENG Bohan, LI Hui. The Relationship between Promoter Region DNA Methylation of TCF21 Gene and Its Expression in Chicken Adipose Tissue [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(12): 3375-3389. |
[10] | ZHANG Cui, CHEN Weina, LI Junliang, GU Shukai, XU Da, LI Dongjie, LI Shijie. Abnormal Expression of LINC24065 in Somatic Cell Nuclear Transfer Cattle [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2019, 50(1): 44-51. |
[11] | ZHANG Yan-yan, PENG Hui, XIAO Tian-fang. Research Progress of Trophectoderm Development of Early Embryo in Mammals [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2018, 49(10): 2080-2085. |
[12] | GAN Mai-lin, YANG Da-hong, TAN Ya, YANG Qiong, PU Hong-zhou, ZHANG Shun-hua, ZHU Li. The Study of Influence of Environment on Transgenerational Inheritance of DNA Methylation in Mammals [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2017, 48(12): 2225-2231. |
[13] | LIU Zi-fei, DENG Ming-tian, REN Cai-fang, WAN Yong-jie, WANG Feng. IGF2-H19 Locus Methylation Status in Cloned Goat Fibroblast Cells [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2017, 48(12): 2277-2285. |
[14] | WANG Xiao-shuo, ZHAO Hui-min, TANG Tian, LI Kai, QIAN Xu, ZHANG Xue, TU Ya, ZHENG Yun-sheng, WANG Huai-dong, YU Ying. DNA Methylation Modification of CD4 Gene and Its Application in Livestock Diseases-Resistant Breeding [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2017, 48(10): 1796-1806. |
[15] | REN Zi-li,ZHAO Yan-ling,WANG Jian-zhou,LI Yu-xin,SHANG Peng,CHAMBA Yangzom. Effect of Vitamin C on Tibetan Boar Semen Preserved at 4 ℃ and Levels of the Sperm Global Genome DNA Methylation [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2016, 47(5): 1057-1061. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||