Acta Veterinaria et Zootechnica Sinica ›› 2023, Vol. 54 ›› Issue (10): 4003-4015.doi: 10.11843/j.issn.0366-6964.2023.10.001
• REVIEW • Previous Articles Next Articles
LUO Ruijie, CAO Suying*
Received:
2023-05-22
Online:
2023-10-23
Published:
2023-10-26
CLC Number:
LUO Ruijie, CAO Suying. Research Progress and Application Prospect of Livestock Pluripotent Stem Cells[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4003-4015.
[1] | ILIC D, POLAK J M.Stem cells in regenerative medicine:introduction[J].Br Med Bull, 2011, 98(1):117-126. |
[2] | KONG Q R, YANG X, ZHANG H, et al.Lineage specification and pluripotency revealed by transcriptome analysis from oocyte to blastocyst in pig[J].FASEB J, 2020, 34(1):691-705. |
[3] | WHITE M D, ZENKER J, BISSIERE S, et al.Instructions for assembling the early mammalian embryo[J].Dev Cell, 2018, 45(6):667-679. |
[4] | CHAZAUD C, YAMANAKA Y.Lineage specification in the mouse preimplantation embryo[J].Development, 2016, 143(7):1063-1074. |
[5] | EVANS M J, KAUFMAN M H.Establishment in culture of pluripotential cells from mouse embryos[J].Nature, 1981, 292(5819):154-156. |
[6] | SMITH A G, HEATH J K, DONALDSON D D, et al.Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides[J].Nature, 1988, 336(6200):688-690. |
[7] | YING Q L, NICHOLS J, CHAMBERS I, et al.BMP induction of id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3[J].Cell, 2003, 115(3):281-292. |
[8] | WRAY J, KALKAN T, GOMEZ-LOPEZ S, et al.Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation[J].Nat Cell Biol, 2011, 13(7):838-845. |
[9] | KINOSHITA M, BARBER M, MANSFIELD W, et al.Capture of mouse and human stem cells with features of formative pluripotency[J].Cell Stem Cell, 2021, 28(3):453-471.e8. |
[10] | WEINBERGER L, AYYASH M, NOVERSHTERN N, et al.Dynamic stem cell states:naive to primed pluripotency in rodents and humans[J].Nat Rev Mol Cell Biol, 2016, 17(3):155-169. |
[11] | KOJIMA Y, KAUFMAN-FRANCIS K, STUDDERT J B, et al.The transcriptional and functional properties of mouse epiblast stem cells resemble the anterior primitive streak[J].Cell Stem Cell, 2014, 14(1):107-120. |
[12] | TESAR P J, CHENOWETH J G, BROOK F A, et al.New cell lines from mouse epiblast share defining features with human embryonic stem cells[J].Nature, 2007, 448(7150):196-199. |
[13] | WANG X X, XIANG Y L, YU Y, et al.Formative pluripotent stem cells show features of epiblast cells poised for gastrulation[J].Cell Res, 2021, 31(5):526-541. |
[14] | YU L Q, WEI Y L, SUN H X, et al.Derivation of intermediate pluripotent stem cells amenable to primordial germ cell specification[J].Cell Stem Cell, 2021, 28(3):550-567.e12. |
[15] | ZHANG J Y, ZHI M L, GAO D F, et al.Research progress and application prospects of stable porcine pluripotent stem cells[J].Biol Reprod, 2022, 107(1):226-236. |
[16] | NICHOLS J, SMITH A.Naive and primed pluripotent states[J].Cell Stem Cell, 2009, 4(6):487-492. |
[17] | LIU T B, LI J, YU L Q, et al.Cross-species single-cell transcriptomic analysis reveals pre-gastrulation developmental differences among pigs, monkeys, and humans[J].Cell Discov, 2021, 7(1):8. |
[18] | DE LOS ANGELES A, FERRARI F, XI R B, et al.Hallmarks of pluripotency[J].Nature, 2015, 525(7570):469-478. |
[19] | VASSILIEV I, VASSILIEVA S, BEEBE L F S, et al.In vitro and in vivo characterization of putative porcine embryonic stem cells[J].Cell Reprogram, 2010, 12(2):223-230. |
[20] | LUO Q, PUI H P, CHEN J Y, et al.Epiblast-like stem cells established by Wnt/β-catenin signaling manifest distinct features of formative pluripotency and germline competence[J].Cell Rep, 2023, 42(1):112021. |
[21] | HORIGUCHI I, KINO-OKA M.Current developments in the stable production of human induced pluripotent stem cells[J].Engineering, 2021, 7(2):144-152. |
[22] | YOSHINO T, SUZUKI T, NAGAMATSU G, et al.Generation of ovarian follicles from mouse pluripotent stem cells[J].Science, 2021, 373(6552):eabe0237. |
[23] | STICE S L, STRELCHENKO N S, KEEFER C L, et al.Pluripotent bovine embryonic cell lines direct embryonic development following nuclear transfer[J].Biol Reprod, 1996, 54(1):100-110. |
[24] | TAKAHASHI K, YAMANAKA S.Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J].Cell, 2006, 126(4):663-676. |
[25] | YU J Y, VODYANIK M A, SMUGA-OTTO K, et al.Induced pluripotent stem cell lines derived from human somatic cells[J].Science, 2007, 318(5858):1917-1920. |
[26] | LIAO J, CUI C, CHEN S Y, et al.Generation of induced pluripotent stem cell lines from adult rat cells[J].Cell Stem Cell, 2009, 4(1):11-15. |
[27] | LIU H S, ZHU F F, YONG J, et al.Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts[J]. Cell Stem Cell, 2008, 3(6):587-590. |
[28] | EZASHI T, TELUGU B P V L, ALEXENKO A P, et al.Derivation of induced pluripotent stem cells from pig somatic cells[J].Proc Natl Acad Sci U S A, 2009, 106(27):10993-10998. |
[29] | WU Z, CHEN J J, REN J T, et al.Generation of pig induced pluripotent stem cells with a drug-inducible system[J].J Mol Cell Biol, 2009, 1(1):46-54. |
[30] | ESTEBAN M A, XU J Y, YANG J Y, et al.Generation of induced pluripotent stem cell lines from Tibetan miniature pig[J].J Biol Chem, 2009, 284(26):17634-17640. |
[31] | HAN X P, HAN J Y, DING F R, et al.Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells[J].Cell Res, 2011, 21(10):1509-1512. |
[32] | BAO L, HE L X Z, CHEN J J, et al.Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors[J].Cell Res, 2011, 21(4):600-608. |
[33] | REN J T, PAK Y, HE L X Z, et al.Generation of hircine-induced pluripotent stem cells by somatic cell reprogramming[J].Cell Res, 2011, 21(5):849-853. |
[34] | NAGY K, SUNG H K, ZHANG P Z, et al.Induced pluripotent stem cell lines derived from equine fibroblasts[J].Stem Cell Rev Rep, 2011, 7(3):693-702. |
[35] | OKITA K, HONG H, TAKAHASHI K, et al.Generation of mouse-induced pluripotent stem cells with plasmid vectors[J].Nat Protoc, 2010, 5(3):418-428. |
[36] | LIUYANG S J, WANG G, WANG Y L, et al.Highly efficient and rapid generation of human pluripotent stem cells by chemical reprogramming[J].Cell Stem Cell, 2023, 30(4):450-459.e9. |
[37] | DENG W X, JACOBSON E C, COLLIER A J, et al.The transcription factor code in iPSC reprogramming[J].Curr Opin Genet Dev, 2021, 70:89-96. |
[38] | HAN J K, SHIN Y, KIM H S.Direct conversion of cell fate and induced endothelial cells[J].Circ J, 2021, 86(12):1925-1933. |
[39] | YAMANAKA S.Pluripotent stem cell-based cell therapy-promise and challenges[J].Cell Stem Cell, 2020, 27(4):523-531. |
[40] | DU X G, FENG T, YU D W, et al.Barriers for deriving transgene-free pig iPS cells with episomal vectors[J].Stem Cells, 2015, 33(11):3228-3238. |
[41] | 徐彦文, 周婧萱, 师科荣.iPSCs在家畜育种中的作用研究进展[J].中国畜牧杂志, 2022, 58(4):119-125.XU Y W, ZHOU J X, SHI K R.Advances in the role of iPSCs in the breeding of husbandry animals[J].Chinese Journal of Animal Science, 2022, 58(4):119-125.(in Chinese) |
[42] | MADEJA Z E, PAWLAK P, PILISZEK A.Beyond the mouse:non-rodent animal models for study of early mammalian development and biomedical research[J].Int J Dev Biol, 2019, 63(3-5):187-201. |
[43] | RAMOS-IBEAS P, SANG F, ZHU Q F, et al.Pluripotency and X chromosome dynamics revealed in pig pre-gastrulating embryos by single cell analysis[J].Nat Commun, 2019, 10(1):500. |
[44] | SECHER J O, CALLESEN H, FREUDE K K, et al.Initial embryology and pluripotent stem cells in the pig-The quest for establishing the pig as a model for cell therapy[J].Theriogenology, 2016, 85(1):162-171. |
[45] | KUMAR D, TALLURI T R, SELOKAR N L, et al.Perspectives of pluripotent stem cells in livestock[J].World J Stem Cells, 2021, 13(1):1-29. |
[46] | ZHAO L X, GAO X F, ZHENG Y X, et al.Establishment of bovine expanded potential stem cells[J].Proc Natl Acad Sci U S A, 2021, 118(15):e2018505118. |
[47] | CHOI K H, LEE D K, KIM S W, et al.Chemically defined media can maintain pig pluripotency network in vitro[J].Stem Cell Rep, 2019, 13(1):221-234. |
[48] | KOBAYASHI T, ZHANG H X, TANG W W C, et al.Principles of early human development and germ cell program from conserved model systems[J].Nature, 2017, 546(7658):416-420. |
[49] | THEUNISSEN T W, POWELL B E, WANG H Y, et al.Systematic identification of culture conditions for induction and maintenance of naive human pluripotency[J].Cell Stem Cell, 2014, 15(4):471-487. |
[50] | WARE C B, NELSON A M, MECHAM B, et al.Derivation of naïve human embryonic stem cells[J].Proc Natl Acad Sci U S A, 2014, 111(12):4484-4489. |
[51] | LIU J Q, XIAO Q, XIAO J N, et al.Wnt/β-catenin signalling:function, biological mechanisms, and therapeutic opportunities[J].Signal Transduct Target Ther, 2022, 7(1):3. |
[52] | SHEN H, YANG M, LI S Y, et al.Mouse totipotent stem cells captured and maintained through spliceosomal repression[J].Cell, 2021, 184(11):2843-2859.e20. |
[53] | YANG M Z, YU H W, YU X, et al.Chemical-induced chromatin remodeling reprograms mouse ESCs to totipotent-like stem cells[J].Cell Stem Cell, 2022, 29(3):400-418.e13. |
[54] | MORRIS R, KERSHAW N J, BABON J J.The molecular details of cytokine signaling via the JAK/STAT pathway[J]. Protein Sci, 2018, 27(12):1984-2009. |
[55] | LI Y, CANG M, LEE A S, et al.Reprogramming of sheep fibroblasts into pluripotency under a drug-inducible expression of mouse-derived defined factors[J].PLoS One, 2011, 6(1):e15947. |
[56] | HALL V J.Early development of the porcine embryo:the importance of cell signalling in development of pluripotent cell lines[J].Reprod Fertil Develop, 2012, 25(1):94-102. |
[57] | ZHI M L, ZHANG J Y, TANG Q Z, et al.Generation and characterization of stable pig pregastrulation epiblast stem cell lines[J].Cell Res, 2022, 32(4):383-400. |
[58] | KIM D, JUNG Y G, ROH S.Microarray analysis of embryo-derived bovine pluripotent cells:the vulnerable state of bovine embryonic stem cells[J].PLoS One, 2017, 12(3):e0173278. |
[59] | BRENNAN J, LU C C, NORRIS D P, et al.Nodal signalling in the epiblast patterns the early mouse embryo[J].Nature, 2001, 411(6840):965-969. |
[60] | PAUKLIN S, VALLIER L.Activin/nodal signalling in stem cells[J].Development, 2015, 142(4):607-619. |
[61] | VALLIER L, MENDJAN S, BROWN S, et al.Activin/nodal signalling maintains pluripotency by controlling nanog expression[J].Development, 2009, 136(8):1339-1349. |
[62] | BRONS I G M, SMITHERS L E, TROTTER M W B, et al.Derivation of pluripotent epiblast stem cells from mammalian embryos[J].Nature, 2007, 448(7150):191-195. |
[63] | SOSZYŃSKA A, KLIMCZEWSKA K, SUWIŃSKA A.FGF/ERK signaling pathway:how it operates in mammalian preimplantation embryos and embryo-derived stem cells[J].Int J Dev Biol, 2019, 63(3-5):171-186. |
[64] | KUNATH T, SABA-EL-LEIL M K, ALMOUSAILLEAKH M, et al.FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment[J].Development, 2007, 134(16):2895-2902. |
[65] | GUO G, YANG J, NICHOLS J, et al.Klf4 reverts developmentally programmed restriction of ground state pluripotency[J].Development, 2009, 136(7):1063-1069. |
[66] | YING Q L, WRAY J, NICHOLS J, et al.The ground state of embryonic stem cell self-renewal[J].Nature, 2008, 453(7194):519-523. |
[67] | CAO S B, WANG F, CHEN Z S, et al.Isolation and culture of primary bovine embryonic stem cell colonies by a novel method[J].J Exp Zool Part A:Ecol Genet Physiol, 2009, 311A(5):368-376. |
[68] | LI M, ZHANG D, HOU Y, et al.Isolation and culture of embryonic stem cells from porcine blastocysts[J].Mol Reprod Dev, 2003, 65(4):429-434. |
[69] | SONG H, LI H, HUANG M R, et al.Induced pluripotent stem cells from goat fibroblasts[J].Mol Reprod Dev, 2013, 80(12):1009-1017. |
[70] | ZHAO Y C, LIN J P, WANG L Q, et al.Derivation and characterization of ovine embryonic stem-like cell lines in semi-defined medium without feeder cells[J].J Exp Zool Part A:Ecol Genet Physiol, 2011, 315A(10):639-648. |
[71] | BAYERL J, AYYASH M, SHANI T, et al.Principles of signaling pathway modulation for enhancing human naive pluripotency induction[J].Cell Stem Cell, 2021, 28(9):1549-1565.e12. |
[72] | SILVA J, BARRANDON O, NICHOLS J, et al.Promotion of reprogramming to ground state pluripotency by signal inhibition[J]. PLoS Biol, 2008, 6(10):e253. |
[73] | HASSANI S N, TOTONCHI M, GOURABI H, et al.Signaling roadmap modulating naive and primed pluripotency[J].Stem Cells Dev, 2014, 23(3):193-208. |
[74] | VIUKOV S, SHANI T, BAYERL J, et al.Human primed and naïve PSCs are both able to differentiate into trophoblast stem cells[J].Stem Cell Rep, 2022, 17(11):2484-2500. |
[75] | KINOSHITA M, KOBAYASHI T, PLANELLS B, et al.Pluripotent stem cells related to embryonic disc exhibit common self-renewal requirements in diverse livestock species[J].Development, 2021, 148(23):dev199901. |
[76] | YOSHIMATSU S, NAKAJIMA M, IGUCHI A, et al.Non-viral induction of transgene-free iPSCs from somatic fibroblasts of multiple mammalian species[J].Stem Cell Rep, 2021, 16(4):754-770. |
[77] | VILARINO M, ALBA SOTO D, SOLEDAD BOGLIOTTI Y, et al.Derivation of sheep embryonic stem cells under optimized conditions[J].Reproduction, 2020, 160(5):761-772. |
[78] | STROJEK R M, REED M A, HOOVER J L, et al.A method for cultivating morphologically undifferentiated embryonic stem cells from porcine blastocysts[J].Theriogenology, 1990, 33(4):901-913. |
[79] | SAITO S, STRELCHENKO N, NIEMANN H.Bovine embryonic stem cell-like cell lines cultured over several passages[J]. Roux's Arch Dev Biol, 1992, 201(3):134-141. |
[80] | HANDYSIDE A, HOOPER M L, KAUFMAN M H, et al.Towards the isolation of embryonal stem cell lines from the sheep[J].Roux's Arch Dev Biol, 1987, 196(3):185-190. |
[81] | HARAGUCHI S, KIKUCHI K, NAKAI M, et al.Establishment of self-renewing porcine embryonic stem cell-like cells by signal inhibition[J].J Reprod Develop, 2012, 58(6):707-716. |
[82] | FURUSAWA T, OHKOSHI K, KIMURA K, et al.Characteristics of bovine inner cell mass-derived cell lines and their fate in chimeric conceptuses[J].Biol Reprod, 2013, 89(2):28. |
[83] | VERMA V, HUANG B, KALLINGAPPA P K, et al.Dual kinase inhibition promotes pluripotency in finite bovine embryonic cell lines[J].Stem Cells Dev, 2013, 22(11):1728-1742. |
[84] | BOGLIOTTI Y S, WU J, VILARINO M, et al.Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts[J].Proc Natl Acad Sci U S A, 2018, 115(9):2090-2095. |
[85] | SUMER H, LIU J, MALAVER-ORTEGA L F, et al.NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts[J].J Anim Sci, 2011, 89(9):2708-2716. |
[86] | ZHOU M, ZHANG M L, GUO T X, et al.Species origin of exogenous transcription factors affects the activation of endogenous pluripotency markers and signaling pathways of porcine induced pluripotent stem cells[J].Front Cell Dev Biol, 2023, 11:1196273. |
[87] | QIAO S Y, DENG Y F, LI S, et al.Partially reprogrammed induced pluripotent stem cells using MicroRNA cluster miR-302s in Guangxi Bama minipig fibroblasts[J].Cell Reprogram, 2019, 21(5):229-237. |
[88] | LI X, ZHANG P F, JIANG S S, et al.Aging adult porcine fibroblasts can support nuclear transfer and transcription factor-mediated reprogramming[J].Anim Sci J, 2018, 89(2):289-297. |
[89] | ZHU Z S, PAN Q, ZHAO W X, et al.BCL2 enhances survival of porcine pluripotent stem cells through promoting FGFR2[J]. Cell Prolif, 2021, 54(1):e12932. |
[90] | GAO X F, NOWAK-IMIALEK M, CHEN X, et al.Establishment of porcine and human expanded potential stem cells[J]. Nat Cell Biol, 2019, 21(6):687-699. |
[91] | XU J J, YU L Q, GUO J X, et al.Generation of pig induced pluripotent stem cells using an extended pluripotent stem cell culture system[J].Stem Cell Res Ther, 2019, 10(1):193. |
[92] | ZHAO T, FU Y, ZHU J L, et al.Single-cell RNA-seq reveals dynamic early embryonic-like programs during chemical reprogramming[J].Cell Stem Cell, 2018, 23(1):31-45.e7. |
[93] | ZHU Q Q, WANG F C, GAO D F, et al.Generation of stable integration-free pig induced pluripotent stem cells under chemically defined culture condition[J].Cell Prolif, 2023:e13487, doi:10.1111/cpr.13487. |
[94] | GOSZCZYNSKI D E, DENICOL A C, ROSS P J.Gametes from stem cells:status and applications in animal reproduction[J]. Reprod Domest Anim, 2019, 54(S4):22-31. |
[95] | LI C H, YAO Z K, MA L Z, et al.Lovastatin promotes the self-renewal of murine and primate spermatogonial stem cells[J].Stem Cell Rep, 2023, 18(4):969-984. |
[96] | ZHOU Q, WANG M, YUAN Y, et al.Complete meiosis from embryonic stem cell-derived germ cells in vitro[J].Cell Stem Cell, 2016, 18(3):330-340. |
[97] | 张 鹏, 王明秀, 敬科民, 等.FGFs/FGFRs及其介导信号通路基因的异常表达影响犏牛未分化精原细胞增殖活性[J].畜牧兽医学报, 2023, 54(7):2886-2897.ZHANG P, WANG M X, JING K M, et al.Abnormal expression of FGFs/FGFRs and their mediated signaling pathway genes affect the proliferative activity of undifferentiated spermatogonia in cattleyak[J].Acta Veterinaria et Zootechnica Sinica, 2023, 54(7):2886-2897.(in Chinese) |
[98] | 但一昕, 杨 璐, 向 华, 等.BIRC5对山羊睾丸细胞周期、凋亡的影响[J].畜牧兽医学报, 2023, 54(4):1511-1524.DAN Y X, YANG L, XIANG H, et al.Effects of BIRC5 on the cycle and apoptosis of goat testis cells[J].Acta Veterinaria et Zootechnica Sinica, 2023, 54(4):1511-1524.(in Chinese) |
[99] | HWANG Y S, SUZUKI S, SEITA Y, et al.Reconstitution of prospermatogonial specification in vitro from human induced pluripotent stem cells[J].Nat Commun, 2020, 11(1):5656. |
[100] | 张丽莎, 熊挺淋, 应梦慧, 等.诱导多能干细胞来源的心肌细胞对心肌梗死大鼠的心脏修复作用[J].西部医学, 2022, 34(4):498-503.ZHANG L S, XIONG T L, YING M H, et al.Cardiac repair effect of cardiomyocytes derived from induced pluripotent stem cells in rats with myocardial infarction[J].Medical Journal of West China, 2022, 34(4):498-503.(in Chinese) |
[101] | 刘 益, 胡韦维.诱导多能干细胞在遗传性血液病中的应用与前景[J].检验医学与临床, 2018, 15(18):2826-2828, 2835.LIU Y, HU W W.Application and prospects of induced pluripotent stem cells in hereditary hematological diseases[J].Laboratory Medicine and Clinic, 2018, 15(18):2826-2828, 2835.(in Chinese) |
[102] | DOI D, MAGOTANI H, KIKUCHI T, et al.Pre-clinical study of induced pluripotent stem cell-derived dopaminergic progenitor cells for Parkinson's disease[J].Nat Commun, 2020, 11(1):3369. |
[103] | PRATHER R S, LORSON M, ROSS J W, et al.Genetically engineered pig models for human diseases[J].Annu Rev Anim Biosci, 2013, 1:203-219. |
[104] | YUE Y N, XU W H, KAN Y N, et al.Extensive germline genome engineering in pigs[J].Nat Biomed Eng, 2021, 5(2):134-143. |
[105] | 连玉举, 张致远, 廖晓波, 等.医用小型猪选育方法和应用进展[J].畜牧兽医学报, 2023, 54(7):2667-2682.LIAN Y J, ZHANG Z Y, LIAO X B, et al.Breeding methods and application progress of medical miniature pigs[J].Acta Veterinaria et Zootechnica Sinica, 2023, 54(7):2667-2682.(in Chinese) |
[106] | YAN S, TU Z C, LIU Z M, et al.A huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington's disease[J].Cell, 2018, 173(4):989-1002.e13. |
[107] | 陈 尘, 麦明杰, 孙图成, 等.诱导性多能干细胞在心血管领域的研究进展[J].岭南心血管病杂志, 2021, 27(4):508-512.CHEN C, MAI M J, SUN T C, et al.Research progress of induced pluripotent stem cell in cardiovascular field[J].South China Journal of Cardiovascular Diseases, 2021, 27(4):508-512.(in Chinese) |
[108] | 杨昕淳, 吴晓龙, 华进联.诱导多能干细胞向巨噬细胞分化研究进展[J].生物工程学报, 2021, 37(11):4001-4014.YANG X C, WU X L, HUA J L.Induction and differentiation of induced pluripotent stem cells into macrophages:a review[J].Chinese Journal of Biotechnology, 2021, 37(11):4001-4014.(in Chinese) |
[109] | SCHEERLINCK J P Y, SNIBSON K J, BOWLES V M, et al.Biomedical applications of sheep models:from asthma to vaccines[J].Trends Biotechnol, 2008, 26(5):259-266. |
[110] | MCCLELLAN A, PATERSON Y Z, PAILLOT R, et al.Equine fetal, adult, and embryonic stem cell-derived tenocytes are all immune privileged but exhibit different immune suppressive properties in vitro[J].Stem Cells Dev, 2019, 28(21):1413-1423. |
[111] | 黄文俊, 周亚飞, 王 洁, 等.建立并鉴定一种基于人诱导多能干细胞的肝脏细胞定向分化实验方案[J].中国组织工程研究, 2023, 27(1):28-33.HUANG W J, ZHOU Y F, WANG J, et al.Establishment and identification of a protocol for highly efficient differentiation of hepatocytes from human pluripotent stem cells[J].Chinese Journal of Tissue Engineering Research, 2023, 27(1):28-33.(in Chinese) |
[112] | MATSUNARI H, NAGASHIMA H, WATANABE M, et al.Blastocyst complementation generates exogenic pancreas in vivo in apancreatic cloned pigs[J].Proc Natl Acad Sci U S A, 2013, 110(12):4557-4562. |
[113] | 王 乐, 马丹丹, 徐 盼, 等.人类诱导多能干细胞体外定向分化为神经干细胞的方法[J].郑州大学学报:医学版, 2021, 56(5):619-622.WANG L, MA D D, XU P, et al.Directed differentiation of human induced pluripotent stem cells into neural stem cells in vitro[J].Journal of Zhengzhou University:Medical Sciences, 2021, 56(5):619-622.(in Chinese) |
[114] | DENG T, JOVANOVIC V M, TRISTAN C A, et al.Scalable generation of sensory neurons from human pluripotent stem cells[J].Stem Cell Rep, 2023, 18(4):1030-1047. |
[115] | 华荣恺, 张志坚, 华清泉.诱导性多能干细胞内耳移植的研究进展[J].中华耳科学杂志, 2022, 20(3):463-466.HUA R K, ZHANG Z J, HUA Q Q.Advances in research on inner ear transplantation with induced pluripotent stem cells[J].Chinese Journal of Otology, 2022, 20(3):463-466.(in Chinese) |
[116] | 陈奡蕾, 黄德如, 安娅菲, 等.动物肠类器官培养技术[J].畜牧兽医学报, 2023, 54(7):2743-2750.CHEN A L, HUANG D R, AN Y F, et al.Animal intestinal organoids culture[J].Acta Veterinaria et Zootechnica Sinica, 2023, 54(7):2743-2750.(in Chinese) |
[117] | PULLEN L C.Xenotransplant:coming soon?[J].Am J Transplant, 2022, 22(4):1003-1004. |
[118] | ZHANG X, COOPER D K C, DOU K F.Genetically-engineered pig-to-human organ transplantation:a new beginning[J]. Sci Bull, 2022, 67(18):1827-1829. |
[119] | REISS J, ROBERTSON S, SUZUKI M.Cell sources for cultivated meat:applications and considerations throughout the production workflow[J].Int J Mol Sci, 2021, 22(14):7513. |
[120] | FISH K D, RUBIO N R, STOUT A J, et al.Prospects and challenges for cell-cultured fat as a novel food ingredient[J]. Trends Food Sci Technol, 2020, 98:53-67. |
[121] | GENOVESE N J, DOMEIER T L, TELUGU B P V L, et al.Enhanced development of skeletal myotubes from porcine induced pluripotent stem cells[J].Sci Rep, 2017, 7:41833. |
[122] | KANG D, LOUIS F, LIU H, et al.Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting[J].Nat Commun, 2021, 12(1):5059. |
[1] | WANG Yaxin, WANG Jing, TIAN Xuekai, YANG Gongshe, YU Taiyong. Application of Multi-omics Technology in the Study of Important Economic Traits of Livestock and Poultry [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1842-1853. |
[2] | ZHONG Zhuxia, HU Xiuzhong, XIANG Min, YU Jie, LIU Chenhui, ZHAO Shenglan, WAN Pingmin, WANG Dingfa, ZHOU Yuan, CHENG Lei. Research Progress on Biological Function and Application of Pregnancy Associated Glycoproteins in Livestock Production [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 874-881. |
[3] | CHANG Xindan, HU Fan, WU Zhiwu, YE Bingsen, LIU Tiehai, LIN Jie, HE Zhixiong, TAN Zhiliang. Effect of High Proportion Rumen Bypass Fat Diet on Feeding Behavior of Growing Mutton Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1077-1084. |
[4] | LI Ke, WANG Yulong, LI Dong, SHI Xin'e, YANG Gongshe, YU Taiyong. Advances in Pan-genome Study of Livestock and Poultry [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3595-3604. |
[5] | FENG Weimin, LIU Xiao, HUANG Teng. The Evasion Strategy against CTL Recognition by Herpesviruses of Domestic Animals: Interference with MHC Class Ⅰ Antigen Presentation Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2241-2251. |
[6] | XIA Chunqiu, WAN Fachun, LIU Lei, SHEN Weijun, XIAO Dingfu. Valine: Biological Function and Application in Livestock and Poultry Diets [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4502-4513. |
[7] | CHI Chang'an, PENG Siqi, SHEN Changqing, WANG Shicheng, TU Jingyi, XIAO Xiong, QIU Xiaoyan. Research Progress on Livestock Cognitive Function and Regulation Mechanisms [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2403-2416. |
[8] | GUO Haikang, WAN Fachun, SHEN Weijun, WANG Zuo. Research Progress and Related Regulation Technology on Bacterial Quorum Sensing in the Gastro-intestinal Tract of Livestock and Poultry [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(6): 1678-1688. |
[9] | GUO Rong, GUO Yazhou, WANG Shuai, YANG Chen, SU Yongxia, WU Chenchen, LU Hao, ZHAO Baoyu. Advances in Research on Poisonous Plants and Grazing Livestock Poisoning Diseases of Natural Grassland in China [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(5): 1171-1185. |
[10] | WANG Huan, ZOU Huiying, ZHU Huabin, ZHAO Shanjiang. Advances in Evaluation of Livestock Breeding New Materials by Using the CRISPR/Cas9 Gene Editing Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(4): 851-861. |
[11] | YUAN Zehu, GE Ling, LI Fadi, YUE Xiangpeng, SUN Wei. The Method of Genomic Selection by Integrating Biological Prior Information and Its Application in Livestock Breeding [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(12): 3323-3334. |
[12] | SHU Ze, WANG Lixian, WANG Ligang. Research Progress of Alternative Splicing and Its Application in Livestock and Poultry Breeding [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(12): 2911-2920. |
[13] | XUE Zhou-yi-yuan, SONG Xian-wei, WU Lin-hui, WANG Lu-zhen, CUI Jia-an, SUN Zhang-jian, ZHANG Zheng, MA Yun-long. The Identification Methods of Selection Signatures in Livestock and Its Statistical Problems [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2018, 49(6): 1099-1107. |
[14] | YANG Bing, LI Xiao-feng, WANG Xin. Research Progress of Long Noncoding RNA in Economic Traits of Livestock [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2018, 49(10): 2063-2069. |
[15] | ZHANG Wei, ZHANG Shao-peng, LI En-hong, CAO An, LIU Zhi-yu, HAN Jian-yong, CAO Su-ying. Porcine Extraembryonic Endoderm Stem Cell like Cells Induced by Overexpression of Gata6 [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2017, 48(12): 2314-2322. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||