Acta Veterinaria et Zootechnica Sinica ›› 2023, Vol. 54 ›› Issue (12): 4889-4897.doi: 10.11843/j.issn.0366-6964.2023.12.001
• REVIEW • Previous Articles Next Articles
CHEN Siying, SUN Yawen, LI Kang, LIU Shuo, HAO Haisheng, DU Weihua, ZOU Huiying, ZHU Huabin, PANG Yunwei*
Received:
2023-07-27
Online:
2023-12-23
Published:
2023-12-26
CLC Number:
CHEN Siying, SUN Yawen, LI Kang, LIU Shuo, HAO Haisheng, DU Weihua, ZOU Huiying, ZHU Huabin, PANG Yunwei. Application of Microfluidic Technologies in Livestock in vitro Embryo Production[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 4889-4897.
[1] 李光鹏,张立.哺乳动物生殖工程学[M].北京:科学出版社,2018. LI G P,ZHANG L.Mammalian reproductive engineering[M].Beijing:Science Press,2018.(in Chinese) [2] 李楠,林忠.体外胚胎培养是胚胎工程技术的关键环节[J].中国组织工程研究,2019,23(29):4735-4742.LI N,LIN Z.In vitro embryo culture is the core of embryo engineering technology[J].Chinese Journal of Tissue Engineering Research,2019,23(29):4735-4742.(in Chinese) [3] WHITESIDES G M.The origins and the future of microfluidics[J].Nature,2006,442(7101):368-373. [4] 赵士明,赵静一,李文雷,等.微流体驱动与控制系统的研究进展[J].制造技术与机床,2018(7):40-47.ZHAO S M,ZHAO J Y,LI W L,et al.Research progress of microfluid drive and control system[J].Manufacturing Technology & Machine Tool,2018(7):40-47.(in Chinese) [5] NGE P N,ROGERS C I,WOOLLEY A T.Advances in microfluidic materials,functions,integration,and applications[J].Chem Rev,2013,113(4):2550-2583. [6] SUH R S,PHADKE N,OHL D A,et al.Rethinking gamete/embryo isolation and culture with microfluidics[J].Hum Reprod Update,2003,9(5):451-461. [7] CHEN Z R,MEMON K,CAO Y X,et al.A microfluidic approach for synchronous and nondestructive study of the permeability of multiple oocytes[J].Microsyst Nanoeng,2020,6(1):55. [8] IWASAKI W,YAMANAKA K,SUGIYAMA D,et al.Simple separation of good quality bovine oocytes using a microfluidic device[J].Sci Rep,2018,8(1):14273. [9] YUAN Y,PACZKOWSKI M,WHEELER M B,et al.Use of a novel polydimethylsiloxane well insert to successfully mature,culture and identify single porcine oocytes and embryos[J].Reprod Fertil Dev,2014,26(3):375-384. [10] BERENGUEL-ALONSO M,SABÉS-ALSINA M,MORATÓ R,et al.Rapid prototyping of a cyclic olefin copolymer microfluidic device for automated oocyte culturing[J].SLAS Technol,2017,22(5):507-517. [11] MASTROROCCO A,CACOPARDO L,LAMANNA D,et al.Bioengineering approaches to improve in vitro performance of prepubertal lamb oocytes[J].Cells,2021,10(6):1458. [12] MASTROROCCO A,CACOPARDO L,TEMERARIO L,et al.Investigating and modelling an engineered millifluidic in vitro oocyte maturation system reproducing the physiological ovary environment in the sheep model[J].Cells,2022, 11(22): 3611. [13] KHODAMORADI M,RAFIZADEH TAFTI S,MOUSAVI SHAEGH S A,et al.Recent microfluidic innovations for sperm sorting[J].Chemosensors,2021,9(6):126. [14] VEGA J,RODRIGUEZ M,DIPAZ-BERROCAL D,et al.Swim-up and microfluidic techniques improve the kinetic parameters of selected bovine spermatozoa for in vitro fertilization:preliminary results[J].Reprod Fertil Dev,2021,33(2): 137-138. [15] HAMACHER T,BERENDSEN J T W,KRUIT S A,et al.Effect of microfluidic processing on the viability of boar and bull spermatozoa[J].Biomicrofluidics,2020,14(4):044111. [16] NAGATA M P B,ENDO K,OGATA K,et al.Live births from artificial insemination of microfluidic-sorted bovine spermatozoa characterized by trajectories correlated with fertility[J].Proc Natl Acad Sci U S A,2018,115(14):E3087-E3096. [17] YAGHOOBI M,AZIZI M,MOKHTARE A,et al.Progressive bovine sperm separation using parallelized microchamber-based microfluidics[J].Lab Chip,2021,21(14):2791-2804. [18] PAN X Q,GAO K,YANG N,et al.A sperm quality detection system based on microfluidic chip and micro-imaging system[J].Front Vet Sci,2022,9:916861. [19] HERBICHT R,NEUFELD G,KLEIN C,et al.Evaluation of a novel microfluidic chip-like device for purifying bovine frozen-thawed semen for in vitro fertilization[J].Theriogenology,2023,209:50-59. [20] ALKAN H,SATILMIS F,DEMIREL M A,et al.Does using microfluidic sperm sorting chips in bovine ivep affect blastocyst development?[J].Reprod Domest Anim,2023,58(7):1012-1020. [21] VIGOLO V,GAUTIER C,FALOMO M E,et al.Selection of frozen-thawed stallion semen by microfluidic technology[J]. Reprod Domest Anim,2023,58(3):443-449. [22] GRUPEN C G.The evolution of porcine embryo in vitro production[J].Theriogenology,2014,81(1):24-37. [23] FANG X,BANG S,TANGA B M,et al.Oviduct epithelial cell-derived extracellular vesicles promote the developmental competence of IVF porcine embryos[J].Mol Med Rep,2023,27(6):122. [24] FANG Y,WU R G,LEE J M,et al.Microfluidic in-vitro fertilization technologies:Transforming the future of human reproduction[J].TrAC Trends Analyt Chem,2023,160:116959. [25] WENG L D.IVF-on-a-chip:recent advances in microfluidics technology for in vitro fertilization[J].SLAS Technol,2019, 24(4):373-385. [26] CLARK S G,HAUBERT K,BEEBE D J,et al.Reduction of polyspermic penetration using biomimetic microfluidic technology during in vitro fertilization[J].Lab Chip,2005,5(11):1229-1232. [27] HAN C,ZHANG Q F,MA R,et al.Integration of single oocyte trapping,in vitro fertilization and embryo culture in a microwell-structured microfluidic device[J].Lab Chip,2010,10(21):2848-2854. [28] 袁一田.依托微流控芯片的猪体外受精体系优化[D].杨凌:西北农林科技大学,2021.YUAN Y T.Optimization of porcine in vitro fertilization system based on microfludic chip[D].Yangling:Northwest A&F University,2021.(in Chinese) [29] MA R,XIE L,HAN C,et al.In vitro fertilization on a single-oocyte positioning system integrated with motile sperm selection and early embryo development[J].Anal Chem,2011,83(8):2964-2970. [30] KHALILI A,REZAI P.Microfluidic devices for embryonic and larval zebrafish studies[J].Brief Funct Genomics,2019,18(6): 419-432. [31] PANIGRAHI B,CHEN C Y.Microfluidic retention of progressively motile zebrafish sperms[J].Lab Chip,2019,19(24):4033-4042. [32] COLOMBO M,ALKALI I M,PROCHOWSKA S,et al.Fighting like cats and dogs:challenges in domestic carnivore oocyte development and promises of innovative culture systems[J].Animals (Basel),2021,11(7):2135. [33] LE GAC S,NORDHOFF V.Microfluidics for mammalian embryo culture and selection:where do we stand now?[J].Mol Hum Reprod,2017,23(4):213-226. [34] BORMANN C,CABRERA L,HEO Y S,et al.Dynamic microfluidic embryo culture enhances blastocyst development of murine and bovine embryos[J].Biol Reprod,2007,77(S1):89-90. [35] KIM M S,BAE C Y,WEE G,et al.A microfluidic in vitro cultivation system for mechanical stimulation of bovine embryos[J]. Electrophoresis,2009,30(18):3276-3282. [36] KARCZ A,VAN SOOM A,SMITS K,et al.Electrically-driven handling of gametes and embryos:taking a step towards the future of arts[J].Lab Chip,2022,22(10):1852-1875. [37] HUANG H Y,SHEN H H,CHUNG L Y,et al.Fertilization of mouse gametes in vitro using a digital microfluidic system[J]. IEEE Trans Nanobioscience,2015,14(8):857-863. [38] HUANG H Y,SHEN H H,TIEN C H,et al.Digital microfluidic dynamic culture of mammalian embryos on an electrowetting on dielectric (EWOD) chip[J].PLoS One,2015,10(5):e0124196. [39] LEE M S,HSU W,HUANG H Y,et al.Simultaneous detection of two growth factors from human single-embryo culture medium by a bead-based digital microfluidic chip[J].Biosens Bioelectron,2020,150:111851. [40] KARCZ A,VAN SOOM A,SMITS K,et al.Development of a microfluidic chip powered by EWOD for in vitro manipulation of bovine embryos[J].Biosensors (Basel),2023,13(4):419. [41] FAHY G M.Organ perfusion equipment for the introduction and removal of cryoprotectants[J].Biomed Instrum Technol,1994,28(2):87-100. [42] ZHAO G,FU J P.Microfluidics for cryopreservation[J].Biotechnol Adv,2017,35(2):323-336. [43] PAYNTER S J,COOPER A,GREGORY L,et al.Permeability characteristics of human oocytes in the presence of the cryoprotectant dimethylsulphoxide[J].Hum Reprod,1999,14(9):2338-2342. [44] VANDERZWALMEN P,BERTIN G,DEBAUCHE C,et al.Births after vitrification at morula and blastocyst stages:effect of artificial reduction of the blastocoelic cavity before vitrification[J].Hum Reprod,2002,17(3):744-751. [45] MULLEN S F,AGCA Y,BROERMANN D C,et al.The effect of osmotic stress on the metaphase II spindle of human oocytes,and the relevance to cryopreservation[J].Hum Reprod,2004,19(5):1148-1154. [46] PRIBENSZKY C,LIN L,DU Y,et al.Controlled stress improves oocyte performance-cell preconditioning in assisted reproduction[J]. Reprod Domest Anim,2012,47(S4):197-206. [47] MATA C,LONGMIRE E K,MCKENNA D H,et al.Experimental study of diffusion-based extraction from a cell suspension[J]. Microfluid Nanofluid,2008,5(4):529-540. [48] OSKOUEI B S,ZARGARI S,SHAHABI P,et al.Design and microfabrication of an on-chip oocyte maturation system for reduction of apoptosis[J].Cell J,2021,23(1):32-39. [49] TIRGAR P,SARMADI F,NAJAFI M,et al.Toward embryo cryopreservation-on-a-chip:a standalone microfluidic platform for gradual loading of cryoprotectants to minimize cryoinjuries[J].Biomicrofluidics,2021,15(3):034104. [50] HEO Y S,CABRERA L M,BORMANN C L,et al.Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates[J].Hum Reprod,2010,25(3):613-622. [51] MATSUURA K,HAYASHI N,KURODA Y,et al.Improved development of mouse and human embryos using a tilting embryo culture system[J].Reprod Biomed Online,2010,20(3):358-364. [52] JIANG B S,HUANG B,CAI G Y,et al.Facile and highly efficient loading and freezing of cryoprotectants for oocyte vitrification based on planar microfluidics[J].Microfluid Nanofluid,2021,25(8):63. [53] LAI D,DING J,SMITH G W,et al.Slow and steady cell shrinkage reduces osmotic stress in bovine and murine oocyte and zygote vitrification[J].Hum Reprod,2015,30(1):37-45. [54] 衣星越,周新丽,杨云,等.微流控法去除低温保护剂对卵母细胞发育的影响[J].生物医学工程学杂志,2018,35(1):123-130.YI X Y,ZHOU X L,YANG Y,et al.Effect of cryoprotectant removal by microfluidic chip on developmental capacity of oocytes[J].Journal of Biomedical Engineering,2018,35(1):123-130.(in Chinese) [55] GUO Y Y,YANG Y,YI X Y,et al.Microfluidic method reduces osmotic stress injury to oocytes during cryoprotectant addition and removal processes in porcine oocytes[J].Cryobiology,2019,90:63-70. [56] CAI G Y,JIANG B S,ZHU J X,et al.Design of a controllable push-triggered microfluidic chip for vitrification reagent loading/unloading[C]//Proceedings of 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems.Xiamen:IEEE,2021:953-956. [57] PYNE D G,LIU J,ABDELGAWAD M,et al.Digital microfluidic processing of mammalian embryos for vitrification[J]. PLoS One,2014,9(9):e108128. [58] MIAO S,JIANG Z,LUO J,et al.A robotic system with embedded open microfluidic chip for automatic embryo vitrification[J].IEEE Trans Biomed Eng,2022,69(12):3562-3571. [59] MESEGUER M,KRUHNE U,LAURSEN S.Full in vitro fertilization laboratory mechanization:toward robotic assisted reproduction?[J].Fertil Steril,2012,97(6):1277-1286. [60] PARK J K,LEE J H,PARK E A,et al.Development of optimized vitrification procedures using closed carrier system to improve the survival and developmental competence of vitrified mouse oocytes[J].Cells,2021,10(7):1670. |
[1] | LI Wanjun, XU Jiehuan, HE Mengxian, KONG Yuting, ZHANG Defu, DAI Jianjun. Cytochalasin B Alleviates the Migration Disorder of Cortical Particle Caused by Vitrification in Porcine Oocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1999-2010. |
[2] | CHEN Hongyu, WEI Yating, LI Ruoxi, GAO Liutao, LIU Shenhe. Advances in Animals Sperm Sexing Techniques [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1370-1380. |
[3] | LAN Xinrui, ZHAO Baobao, ZHANG Bihan, LIN Xiaoyu, MA Huiming, WANG Yongsheng. Effects of β-sitosterol on Porcine Oocyte Maturation and Embryonic Development in Vitro [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1629-1637. |
[4] | LI Yujun, HE Honghong, YANG Lixue, YANG Xiaogeng, LI Jian, ZHANG Huizhu. Advances in Regulation of Mammalian Embryonic Development by Mitochondrial Autophagy [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 905-912. |
[5] | JIANG Lijun, ZONG Yunhe, LI Yunlei, CHEN Jilan, GENG Zhaoyu, SUN Yanyan, JIN Sihua. Research Progress of Antioxidant Application in Poultry Semen Storage [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 913-923. |
[6] | CAO Jinkang, ZHANG Chun, WANG Jiayao, LI Xiaotong, WANG Pengyu, FANG Yingyan, ZHANG Yu, DING Ning, JIANG Li. Proteomic Analysis of Sperm with Different Freezability in Chinese Holstein Bulls [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1052-1061. |
[7] | GAO Long, CHANG Xinyi, LI Cheng, ZHAO Xiaoya, LI Wenjie, FAN Haoqian, MA Jingyun. Construction and Rescue of Recombinant CAV-2 Oncolytic Virus Expressing Exogenous Gene SPAM1 [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1228-1237. |
[8] | WANG Nana, LI Qihan, MA Yuan, JIN Haoyan, HU Yamei, MA Yun, ZHANG Lingkai. Research Progress on TLR7 and TLR8 in Livestock Reproductive Control Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 427-437. |
[9] | WENG Yajuan, LI Bei, DUGARJAVIIN Manglai, XUE Jianing, Terigele, SONG Dailing, WANG Guoqing, LIN Ya'nan. The Effect of Splicing Factor hnRNPF on Spermatogenesis in Mongolian Horse [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 598-606. |
[10] | XIAO Yimei, WANG Shengnan, XU Yuewen, HE Xiaolin, YIN Fuquan. Research on the Influence of Heat Stress on Male Reproduction [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 11-21. |
[11] | ZHANG Chenjian, LI Yinxia, DING Qiang, LIU Weijia, WANG Huili, HE Nan, WU Jiashun, CAO Shaoxian. Efficient Preparation of CRISPR/Cas9-mediated Goat SOCS2 Gene Edited Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 129-141. |
[12] | CHEN Yuetong, LIU Xiaohan, WANG Zhiyang, ZHAO Yuxin, ZHOU Tiezhong, HU Zengjin, ZHU Yue, WANG Shaohui, TIAN Mingxing, DING Siyu, QI Jingjing, YU Shengqing. Isolation, Identification, Pathogenicity and Drug Susceptibility of Mycoplasma gallisepticum from Dead Chicken Embryos in Large-scale Chicken Farms in Guangdong Province [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 290-299. |
[13] | SHEN Yingchao, DAVSHILT Toli, REN Hong, WANG Xisheng, TIAN Shuyue, DU Ming, DUGARJAVIIN Manglai, BOU Gerelchimeg. Differential Expression of Oocyte Development-related Hormone and Growth Factor Receptors in Equine Expanded and Compact Cumulus-oocyte Complexes [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3735-3744. |
[14] | ZHENG Gang, LIAN Ling. Research Progress of Key Regulatory Gene DMRT1 in Chicken Sex Determination and Differentiation [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3152-3163. |
[15] | XU Xi, YANG Baigao, ZHANG Hang, FENG Xiaoyi, HAO Haisheng, DU Weihua, ZHU Huabin, ZHANG Peipei, ZHAO Xueming. Effects of NMN on Lipid Droplet Content and Cryopreservation Effect of Bovine Oocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3348-3357. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||