[1] KALDS P, LUO Q, SUN K, et al. Trends towards revealing the genetic architecture of sheep tail patterning: promising genes and investigatory pathways[J]. Anim Genet, 2021, 52(6): 799-812. [2] DENG J, XIE XL, WANG DF, et al. Paternal origins and migratory episodes of domestic sheep[J]. Curr Biol, 2020, 30(20): 4085-4095. [3] 赵有璋. 羊生产学[M]. 北京: 中国农业出版社, 2002: 98. ZHAO Y Z. Sheep production[M]. Beijing: China Agriculture Press, 2002: 98.(in Chinese) [4] LEE J E, SCHMIDT H, LAI B, et al. Transcriptional and epigenomic regulation of adipogenesis[J]. Mol Cell Biol, 2019, 39(11): e00601-e00618. [5] BARQUISSAU V, GHANDOUR R A, AILHAUD G, et al. Control of adipogenesis by oxylipins, GPCRs and PPARs[J]. Biochimie, 2017, 136: 3-11. [6] LI Y, JIN D, XIE W, et al. PPAR-γ and Wnt regulate the differentiation of MSCs into adipocytes and osteoblasts respectively[J]. Curr Stem Cell Res Ther, 2018, 13(3): 185-192. [7] YANG W, YANG C, LUO J, et al. Adiponectin promotes preadipocyte differentiation via the PPARγ pathway[J]. Mol Med Rep, 2018, 17(1): 428-435. [8] ZHANG M, SHAO Y, GAO B, et al. Erchen decoction mitigates lipid metabolism disorder by the regulation of PPARγ and LPL gene in a high-fat diet c57b/6 mice model[J]. Evid based Complement Alternat Med, 2020, 2020: 9102475. [9] KLENOVA E M, NICOLAS R H, PATERSON H F, et al. CTCF, a conserved nuclear factor required for optimal transcriptional activity of the chicken c-myc gene, is an 11-Zn-finger protein differentially expressed in multiple forms[J]. Mol Cell Biol, 1993, 13(12): 7612-7624. [10] ARZATE-MEJÍA R G, RECILLAS-TARGA F, CORCES V G. Developing in 3D: the role of CTCF in cell differentiation[J]. Development, 2018, 145(6): dev137729. [11] KIM S, YU N K, KAANG B K. CTCF as a multifunctional protein in genome regulation and gene expression[J]. Exp Mol Med, 2015, 47(6): e166. [12] ONG C T, CORCES V G. CTCF: an architectural protein bridging genome topology and function[J]. Nat Rev Genet, 2014, 15(4): 234-246. [13] DUBOIS-CHEVALIER J, OGER F, DEHONDT H, et al. A dynamic CTCF chromatin binding landscape promotes DNA hydroxymethylation and transcriptional induction of adipocyte differentiation[J]. Nucleic Acids Res, 2014, 42(17): 10943-10959. [14] CHEN Y, HE R, HAN Z, et al. Cooperation of ATF4 and CTCF promotes adipogenesis through transcriptional regulation[J]. Cell Biol Toxicol, 2022, 38(5): 741-763. [15] TOWBIN H, STAEHELIN T, GORDON J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications[J]. Proc Natl Acad Sci USA, 1979, 76(9): 4350-4354. [16] 李 涛, 陈卫林, 卢 岩, 等. 哈萨克羊不同部位脂肪特性的研究[J]. 中国油脂, 2018, 43(7): 32-35,40. LI T, CHEN W L, LU Y, et al. Fat characteristics in different parts of Kazak sheep[J]. China Oils and Fats, 43(7): 32-35,40.(in Chinese) [17] 张 越, 曹贵方. 绵羊尾脂沉积的研究进展[J]. 当代畜禽养殖业, 2022, (4): 16-18. ZHANG Y, CAO G F. Research progress on tail fat deposition in sheep[J]. Journal of Agricultural and Livestock Products Processing, 2022, (4): 16-18.(in Chinese) [18] QIN H, HAN Z, ZHANG W, et al. CTCF modulates adipocyte lipolysis via directly regulating the expression of Beclin 1 with the cooperation of PPARγ[J]. Cellular Signal, 2024, (113): 110968. [19] CHEN Y, HE R, HAN Z, et al. Cooperation of ATF4 and CTCF promotes adipogenesis through transcriptional regulation[J]. Cell Biol Toxicol, 2021, 38(5): 1-23. [20] RAICHUR S, WANG S T, CHAN P W, et al. CerS2 haploinsufficiency inhibits β-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance[J]. Cell Metab, 2014, 20(5): 919. [21] YANG G, BADEANLOU L, BIELAWSKI J, et al. Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome[J]. Am J Physiol endocrinol Metab, 2009, 297(1): E211-E224. [22] QIAO L, ZHAO B, LIU X, et al. TPT1 promotes the adipogenic differentiation of stromal vascular fractions via the PI3K/AKT pathway and FOXO1 in sheep[J]. J Appl Anim Res, 2023, 51(1): 388-396. [23] SONG Y, ZHANG J, JIANG C, et al. FOXO1 regulates the formation of bovine fat by targeting CD36 and STEAP4[J]. Int J Biol Macromol, 2023, 248: 126025. [24] ARMONI M, HAREL C, KARNI S, et al. FOXO1 represses peroxisome proliferator-activated receptor-gamma1 and -gamma2 gene promoters in primary adipocytes. A novel paradigm to increase insulin sensitivity[J]. J Biol Chem, 2006, 281(29): 19881-19891. [25] LI Y, XU S, MIHAYLOVA M M, et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice[J]. Cell Metab, 2011, 13(4): 376-388. [26] 袁弯弯. Asprosin通过TLR4-cAMP-AMPK-ULK1通路促进脂肪细胞自噬抑制白色脂肪褐色化参与肥胖的发生[D]. 南昌: 南昌大学, 2022. YUAN W W. Asprosin inhibits browning by promoting the autophagy ofadipocyte via TLR4-cAMP-AMPK-ULK1 pathway in white adiposetissue[D]. Nanchang: Nanchang University, 2022.(in Chinese) [27] SUN T, HAO Z, MENG F, et al. The effects of sika deer antler peptides on 3T3-L1 preadipocytes and C57BL/6 mice via activating AMPK signaling and gut microbiota[J]. Molecules, 2025, 30(5): 1173. [28] SICINSKI P, DONAHER JL, GENG Y, et al. Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis[J]. Nature, 1996, 384(6608): 470-474. [29] GENG Y, YU Q, SICINSKA E, et al. Cyclin E ablation in the mouse[J]. Cell, 2003, 114(4): 431-443. [30] YAO C C, ZIOBER B L, SQUILLACE R M, et al. Alpha7 integrin mediates cell adhesion and migration on specific laminin isoforms[J]. J Biol Chem, 1996, 271(41): 25598-25603. [31] AUMAILLEY M, BRUCKNER-TUDERMAN L, CARTER W, et al. A simplified laminin nomenclature[J]. Matrix Biol, 2005, 24(5): 326-332. [32] CHEN H J, YAN X Y, SUN A, et al. High-fat-diet-induced extracellular matrix deposition regulates integrin - FAK signals in adipose tissue to promote obesity[J]. Mol Nutr Food Res, 2022, 66(7): e2101088. [33] JIAO H, KULYTÉ A, NÄSLUND E, et al. Whole-exome sequencing suggests LAMB3 as a susceptibility gene for morbid obesity[J]. Diabetes, 2016, 65(10): 2980-2989. [34] 王思元, 刘 迪, 张伟红, 等. 基于转录组测序分析牛不同脂肪组织的脂肪沉积差异研究[J]. 西北农业学报, 2021, 30(12): 1755-1766. WANG S Y, LIU D, ZHANG W H, et al. Analysis of the difference of fat deposition in different adipose tissues of cattle based on transcriptome sequencing[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2021, 30(12): 1755-1766.(in Chinese) [35] ZHAO R, KAAKATI R, LIU X, et al. CRISPR/Cas9-mediated BRCA1 knockdown adipose stem cells promote breast cancer progression[J]. Plast Reconstr Surg, 2019, 143(3): 747-756. [36] ORTEGA F J, MORENO-NAVARRETE J M, MAYAS D, et al. Breast cancer 1 (BrCa1) may be behind decreased lipogenesis in adipose tissue from obese subjects[J]. PLoS One, 2012, 7(5): e33233. [37] WENG M, ZHU X. Thrombospondin-2 induces M2 macrophage polarization through fatty acid metabolism to drive lung adenocarcinoma proliferation[J]. Anticancer Drugs, 2025, 36(6): 459-467. [38] 欧阳翱镕. 肿瘤相关脂肪细胞促进前列腺癌骨转移及其分子机制的初步研究[D]. 广州: 南方医科大学, 2024. OUYANG A R. A preliminary study of tumor-associated adipocytespromoting bone metastasis of prostate cancer and itsmolecular mechanism[D]. Guangzhou: Southern Medical University, 2024.(in Chinese) [39] HAO J, LIU Z, JU W, et al. Role and mechanism of FLT4 in high-fat diet-induced obesity in mice[J]. Biocheml Biophys Res Commun, 2023, 675: 61-70. |