

Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (9): 4315-4327.doi: 10.11843/j.issn.0366-6964.2025.09.016
• Animal Genetics and Breeding • Previous Articles Next Articles
					
													BAI Feng1(
), MAERZIYA·Yasen 1, AMINIGULI·Abulaizi 1, TENG Wen3, LUO Chunyan1, NAZHAKAITI·Ainiwaner 2, ZHANG Yuntao2, JI Xinmin2, ZHANG Yanhua1,*(
)
												  
						
						
						
					
				
Received:2025-02-12
															
							
															
							
															
							
																	Online:2025-09-23
															
							
																	Published:2025-09-30
															
						Contact:
								ZHANG Yanhua   
																	E-mail:BF95114@outlook.com;181103221@qq.com
																					CLC Number:
BAI Feng, MAERZIYA·Yasen , AMINIGULI·Abulaizi , TENG Wen, LUO Chunyan, NAZHAKAITI·Ainiwaner , ZHANG Yuntao, JI Xinmin, ZHANG Yanhua. Genome-Wide Association Study of Body Weight and Body Size Traits In Turpan Black Sheep[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4315-4327.
Table 1
Descriptive statistics of the body weight and body size traits of the Turpan black sheep"
| 性状 Trait  |  平均值 Mean value  |  标准差 Standard deviation  |  标准误 Standard error  |  最大值 Maximum value  |  最小值 Minimum value  |  
| 体重/kg Body weight | 56.70 | 15.28 | 1.35 | 87 | 37 | 
| 体高/cm Body height | 68.60 | 3.79 | 0.33 | 79 | 60 | 
| 体斜长/cm Body lenth | 70.81 | 3.90 | 0.34 | 84 | 62 | 
| 胸宽/cm Chest width | 21.19 | 9.09 | 0.80 | 79 | 15 | 
| 胸深/cm Chest depth | 29.27 | 3.14 | 0.28 | 36 | 21 | 
| 胸围/cm Chest circumference | 98.53 | 12.35 | 1.09 | 129 | 75 | 
| 管围/cm Tube circumference | 9.43 | 0.70 | 0.06 | 11.5 | 8 | 
| 尾宽/cm Tail width | 17.70 | 3.13 | 0.28 | 26 | 11 | 
| 尾长/cm Tail lenth | 13.88 | 3.04 | 0.27 | 20 | 5 | 
Fig. 3
Manhattan plot and normal QQ plot of GWAS analysis of body weight and body size traits in Turpan black sheep The Manhattan and QQ plots of the body weight, body height, body length, chest width, chest depth, chest circumference, tube circumference, tail width and tail length of the Turpan black sheep"
														Table 2
SNPs and candidate genes significantly associated with body weight and body size traits"
| 性状 Trait  |  染色体 Chromosome  |  SNP位置 SNP location  |  基因型 Genotype  |  次等位基因频率 MAF  |  P值 P-value  |  功能注释 Functional annotation  |  候选基因 Candidate gene  |  
| 体高 Body height  |  16 | 16:40065579 | G/A | 0.129 9 | 1.26×10-6 | intronic | ADAMTS12 | 
| 21 | 21:31871278 | C/T | 0.204 2 | 9.82×10-7 | intronic | OPCML | |
| 体长 Body length  |  14 | 14:60269030 | G/T | 0.068 0 | 2.86×10-6 | intronic | LOC101108416 | 
| 14 | 14:60269030 | G/T | 0.068 0 | 2.86×10-6 | intronic | LOC101112635 | |
| 18 | 18:63037938 | G/A | 0.264 0 | 3.49×10-6 | intronic | WDR25 | |
| 21 | 21:31871278 | C/T | 0.204 2 | 7.03×10-6 | intronic | OPCML | |
| 24 | 24:24281700 | G/A | 0.472 9 | 3.48×10-6 | intronic | HS3ST4 | |
| 体重 Body weight  |  1 | 1:162309133 | A/G | 0.238 3 | 3.55×10-6 | intronic | EPHA6 | 
| 3 | 3:6305883 | C/T | 0.267 7 | 2.67×10-6 | intronic | HMCN2 | |
| 3 | 3:209166910 | T/C | 0.101 6 | 7.67×10-6 | intergenic | C1RL | |
| 7 | 7:60036524 | C/G | 0.075 6 | 6.42×10-6 | intronic | FBN1 | |
| 7 | 7:88861927 | A/C | 0.124 0 | 3.69×10-6 | intronic | NRXN3 | |
| 12 | 12:64948358 | C/T | 0.067 2 | 3.65×10-6 | intronic | C12H1orf21 | |
| 16 | 16:40065579 | G/A | 0.129 9 | 2.57×10-6 | intronic | ADAMTS12 | |
| 22 | 22:7206258 | G/C | 0.307 1 | 7.11×10-6 | intronic | PRKG1 | |
| 25 | 25:4258888 | G/A | 0.183 6 | 4.28×10-6 | intergenic | DISC1 | |
| NW_024599828 | NW_024599828: 1113906  |  A/C | 0.359 5 | 1.88×10-6 | intronic | LOC101102275 | |
| NW_024599828 | NW_024599828: 1113906  |  A/C | 0.359 5 | 1.88×10-6 | intronic | PAG3 | |
| 胸围 Chest circumference  |  1 | 1:271185186 | C/T | 0.191 4 | 5.63×10-6 | intronic | KCNJ15 | 
| 3 | 3:203630569 | C/T | 0.230 5 | 7.19×10-8 | intronic | ETV6 | |
| 3 | 3:203630569 | C/T | 0.230 5 | 7.19×10-8 | intronic | LOC121819203 | |
| 6 | 6:86670534 | T/A | 0.475 8 | 7.88×10-6 | intergenic | LOC105612199 | |
| 16 | 16:40065579 | G/A | 0.129 9 | 1.15×10-7 | intronic | ADAMTS12 | |
| 胸深 Chest depth  |  5 | 5:22169507 | T/C | 0.089 0 | 4.64×10-7 | intronic | MINAR2 | 
| 8 | 8:48325347 | T/C | 0.065 0 | 7.93×10-6 | UTR3 | LOC101114365 | |
| 8 | 8:48325347 | T/C | 0.065 0 | 7.93×10-6 | UTR3 | PM20D2 | |
| 10 | 10:82538718 | T/C | 0.119 8 | 3.26×10-6 | intronic | NALF1 | |
| 胸宽 Chest width  |  19 | 19:19015339 | A/G | 0.101 6 | 8.97×10-6 | intronic | GRM7 | 
| 20 | 20:23813922 | A/T | 0.058 8 | 9.76×10-6 | intronic | PKHD1 | |
| 22 | 22:7206258 | G/C | 0.307 1 | 3.50×10-6 | intronic | PRKG1 | |
| 尾长 Tail lenth  |  9 | 9:21983713 | A/G | 0.232 6 | 7.99×10-6 | intronic | KCNQ3 | 
| 20 | 20:22934892 | G/A | 0.346 2 | 3.20×10-6 | intergenic | TFAP2D | |
| 尾宽 Tail width  |  2 | 2:49086885 | C/A | 0.127 1 | 9.69×10-6 | intronic | ANKS6 | 
| 9 | 9:21983713 | A/G | 0.232 6 | 1.69×10-6 | intronic | KCNQ3 | |
| 14 | 14:6903044 | T/C | 0.259 7 | 3.28×10-6 | intronic | CDYL2 | |
| 管围 Tube circumference  |  1 | 1:226721935 | G/A | 0.160 2 | 4.81×10-6 | intronic | LOC121818542 | 
| 1 | 1:226721935 | G/A | 0.160 2 | 4.81×10-6 | intronic | SPTSSB | |
| 3 | 3:194022073 | C/T | 0.058 1 | 5.75×10-6 | intergenic | KCNJ8 | |
| 10 | 10:49503999 | T/C | 0.315 6 | 8.59×10-6 | intronic | KLF12 | 
| 1 | 关鸣轩, 种丽伟, 魏佩玲, 等. 吐鲁番黑羊肉品质分析[J]. 草食家畜, 2024 (5): 11- 17. | 
| GUAN M X , CHONG L W , WEI P L . Analysis on mutton quality of Turpan Black sheep[J]. Grass-Feeding Livestock, 2024 (5): 11- 17. | |
| 2 | 施海娜, 刘雨田, 李世恩, 等. 杜泊羊体质量与体尺指标的相关及回归分析[J]. 饲料研究, 2021, 44 (13): 5. | 
| SHI H N , LIU Y T , LI S E . Correlation and regression analyses of the body weight and body sizes in Dorper sheep[J]. Feed Research, 2021, 44 (13): 5. | |
| 3 | 海萨·艾也力汗, 张钰, 杨博文, 等. 基于简化基因组测序筛选白斑狗鱼耐热性状关联的InDel标记[J]. 水产学报, 2024, 48 (3): 039105. | 
| YELHAN HAISA , ZHANG Y , YANG B W , et al. Screening of InDel markers associated with heat tolerance traits in Esox lucius based on simplified genome sequencing[J]. Journal of Fisheries of China, 2024, 48 (3): 039105. | |
| 4 |  
											  HAN M ,  WANG X ,  DU H , et al.  Genome-wide association study identifies candidate genes affecting body conformation traits of Zhongwei goat[J]. BMC Genomics, 2025, 26 (1): 37. 
																							 doi: 10.1186/s12864-024-11097-1  | 
										
| 5 |  
											  XIANG X ,  PENG C ,  CAO D , et al.  Whole genome sequencing reveals that five genes are related to BW trait in sheep[J]. Animal, 2024, 18 (9): 101282. 
																							 doi: 10.1016/j.animal.2024.101282  | 
										
| 6 |  
											  LI Y ,  YANG H ,  GUO J , et al.  Uncovering the candidate genes related to sheep body weight using multi-trait genome-wide association analysis[J]. Front Vet Sci, 2023, 10, 1206383. 
																							 doi: 10.3389/fvets.2023.1206383  | 
										
| 7 |  
											  ZHANG F ,  LIU Q ,  GONG P , et al.  Genome-wide association study provided insights into the polled phenotype and polled intersex syndrome (PIS) in goats[J]. BMC Genomics, 2024, 25 (1): 661. 
																							 doi: 10.1186/s12864-024-10568-9  | 
										
| 8 |  
											  SELIONOVA M ,  AIBAZOV M ,  MAMONTOVA T , et al.  Genome-wide association study of live body weight and body conformation traits in young Karachai goats[J]. Small Rumin Res, 2022, 216, 106836. 
																							 doi: 10.1016/j.smallrumres.2022.106836  | 
										
| 9 | 樊琛, 艾克拜尔·艾合麦提, 赵茜, 等. 己酮可可碱对吐鲁番黑羊新鲜精液生理活性的影响[J]. 中国畜牧杂志, 2024, 60 (9): 1- 11. | 
| FAN C , AKBAR AIHMET , ZHAO Q , et al. Effect of pentoxifylline on the physiological activity of fresh semen from Turpan Black Sheep[J]. Chinese Journal of Animal Science, 2024, 60 (9): 1- 11. | |
| 10 | 艾克拜尔·艾合麦提, 樊琛, 英提扎尔·阿不力孜, 等. 原花青素对吐鲁番黑羊精液低温保存效果的影响[J]. 中国畜牧杂志, 2024, 60 (01): 244- 248. | 
| AKBAR AIHMET , FAN C , INTIZAR ABLIZ , et al. Effect of proanthocyanidins on cryopreservation efficiency of Turpan Black sheep semen at low temperature[J]. Chinese Journal of Animal Science, 2024, 60 (9): 244- 248. | |
| 11 | 阿尔曼·海热, 艾克拜尔·艾合麦提, 古丽沙热·吾甫尔, 等. 不同季节吐鲁番黑羊血清中生殖激素的变化规律研究[J]. 中国畜牧杂志, 2024, 60 (1): 255- 259. | 
| ARMAN HAIRE , AKBAR AIHMET , GULSHAHERP WUPUR , et al. Study on the variation patterns of reproductive hormones in serum of Turpan Black Sheep in different seasons[J]. Chinese Journal of Animal Science, 2024, 60 (1): 255- 259. | |
| 12 |  
											  HAIRE A ,  BAI J ,  ZHAO X , et al.  Identifying the heat resistant genes by multi-tissue transcriptome sequencing analysis in Turpan Black sheep[J]. Theriogenology, 2022, 179, 78- 86. 
																							 doi: 10.1016/j.theriogenology.2021.11.008  | 
										
| 13 | 王琼, 曹行, 张小洪, 等. 新疆两个地方绵羊品种策勒黑羊、吐鲁番黑羊的基因组选择信号分析[J]. 草食家畜, 2021 (4): 1- 7. | 
| WANG Q , CAO H , ZHANG X H , et al. Signal analysis of genome-wide selection of two local sheep breeds in Xinjiang: Cele Black Sheep and Turpan Black Sheep[J]. Grass-Feeding Livestock, 2021 (4): 1- 7. | |
| 14 | MA L . 301 Methods of genome-wide association studies and their applications in dairy cattle[J]. J Anim Sci, 2020, 98 (Supplement_4): 31. | 
| 15 |  
											  REN J ,  GAO Z ,  LU Y , et al.  Application of GWAS and mGWAS in livestock and poultry breeding[J]. Animals, 2024, 14 (16): 2382. 
																							 doi: 10.3390/ani14162382  | 
										
| 16 |  
											  SATZ-JACOBOWITZ B ,  HUBMACHER D .  The quest for substrates and binding partners: A critical barrier for understanding the role of ADAMTS proteases in musculoskeletal development and disease[J]. Dev Dyn, 2021, 250 (1): 8- 26. 
																							 doi: 10.1002/dvdy.248  | 
										
| 17 |  
											  MOHAMEDI Y ,  FONTANIL T ,  CAL S , et al.  ADAMTS-12: Functions and challenges for a complex metalloprotease[J]. Front Mol Biosci, 2021, 8, 686763. 
																							 doi: 10.3389/fmolb.2021.686763  | 
										
| 18 |  
											  HOEFT K ,  KOCH L ,  ZIEGLER S , et al.  ADAMTS12 promotes fibrosis by restructuring extracellular matrix to enable activation of injury-responsive fibroblasts[J]. J Clin Invest, 2024, 134 (18): e170246. 
																							 doi: 10.1172/JCI170246  | 
										
| 19 |  
											  JAIN B P ,  PANDEY S .  WD40 repeat proteins: signalling scaffold with diverse functions[J]. Protein J, 2018, 37 (5): 391- 406. 
																							 doi: 10.1007/s10930-018-9785-7  | 
										
| 20 |  
											  XU C ,  MIN J .  Structure and function of WD40 domain proteins[J]. Protein Cell, 2011, 2 (3): 202- 214. 
																							 doi: 10.1007/s13238-011-1018-1  | 
										
| 21 |  
											  ZHAO X ,  NIE C ,  ZHANG J , et al.  Identification of candidate genomic regions for chicken egg number traits based on genome-wide association study[J]. BMC Genomics, 2021, 22 (1): 610. 
																							 doi: 10.1186/s12864-021-07755-3  | 
										
| 22 |  
											  SHIN S ,  HAN J Y ,  LEE K .  Cloning of avian Delta-like 1 homolog gene: the biallelic expression of Delta-like 1 homolog in avian species[J]. Poult Sci, 2010, 89 (5): 948- 955. 
																							 doi: 10.3382/ps.2009-00572  | 
										
| 23 |  
											  DEL CID J S ,  REED N I ,  MOLNAR K , et al.  A disease-associated mutation in fibrillin-1 differentially regulates integrin-mediated cell adhesion[J]. J Biol Chem, 2019, 294 (48): 18232- 18243. 
																							 doi: 10.1074/jbc.RA119.011109  | 
										
| 24 |  
											  LI L ,  HUANG J ,  LIU Y .  The extracellular matrix glycoprotein fibrillin-1 in health and disease[J]. Front Cell Dev Biol, 2024, 11, 1302285. 
																							 doi: 10.3389/fcell.2023.1302285  | 
										
| 25 |  
											  MUTHU M L ,  REINHARDT D P .  Fibrillin-1 and fibrillin-1-derived asprosin in adipose tissue function and metabolic disorders[J]. J Cell Commun Signal, 2020, 14 (2): 159- 173. 
																							 doi: 10.1007/s12079-020-00566-3  | 
										
| 26 |  
											  MUTHU M L ,  TIEDEMANN K ,  FRADETTE J , et al.  Fibrillin-1 regulates white adipose tissue development, homeostasis, and function[J]. Matrix Biol, 2022, 110, 106- 128. 
																							 doi: 10.1016/j.matbio.2022.05.002  | 
										
| 27 |  
											  SEDES L ,  WONDIMU E ,  CROCKETT B , et al.  Fibrillin-1 deficiency in the outer perichondrium causes longitudinal bone overgrowth in mice with Marfan syndrome[J]. Hum Mol Genet, 2022, 31 (19): 3281- 3289. 
																							 doi: 10.1093/hmg/ddac107  | 
										
| 28 |  
											  VANSCHOUWEN B ,  SELVARATNAM R ,  GIRI R , et al.  Mechanism of camp partial agonism in protein kinase g (PKG)[J]. J Biol Chem, 2015, 290 (48): 28631- 28641. 
																							 doi: 10.1074/jbc.M115.685305  | 
										
| 29 |  
											  TAWA P ,  ZHANG L ,  METWALLY E , et al.  Mechanistic insights on novel small molecule allosteric activators of cGMP-dependent protein kinase PKG1α[J]. J Biol Chem, 2022, 298 (9): 102284. 
																							 doi: 10.1016/j.jbc.2022.102284  | 
										
| 30 |  
											  REN Y ,  CHEN X ,  ZHENG X , et al.  Diverse WGBS profiles of longissimus dorsi muscle in Hainan black goats and hybrid goats[J]. BMC Genom Data, 2023, 24 (1): 77. 
																							 doi: 10.1186/s12863-023-01182-x  | 
										
| 31 |  
											  SCHALL N ,  GARCIA J J ,  KALYANARAMAN H , et al.  Protein kinase G1 regulates bone regeneration and rescues diabetic fracture healing[J]. JCI Insight, 2020, 5 (9): e135355. 
																							 doi: 10.1172/jci.insight.135355  | 
										
| 32 |  
											  JAFARI A ,  SIERSBAEK M S ,  CHEN L , et al.  Pharmacological inhibition of protein kinase g1 enhances bone formation by human skeletal stem cells through activation of rhoa-akt signaling[J]. Stem Cells, 2015, 33 (7): 2219- 2231. 
																							 doi: 10.1002/stem.2013  | 
										
| 33 | 庄兆辉, 仲永, 陈月婵, 等. Krüppel样因子在肌肉组织中的功能研究进展[J]. 遗传, 2018, 40 (9): 16. | 
| ZHUANG Z H , ZHONG Y , CHEN Y C , et al. Research progress on the roles of Krü ppel-like factors in muscle tissues[J]. Hereditas, 2018, 40 (9): 16. | |
| 34 |  
											  ZAKERI S ,  AMINIAN H ,  SADEGHI S , et al.  Krüppel-like factors in bone biology[J]. Cell Signal, 2022, 93, 110308. 
																							 doi: 10.1016/j.cellsig.2022.110308  | 
										
| 35 |  
											  YANG J ,  LIU Z ,  LIU B , et al.  Silencing of circCYP51A1 represses cell progression and glycolysis by regulating miR-490-3p/KLF12 axis in osteosarcoma under hypoxia[J]. J Bone Oncol, 2022, 37, 100455. 
																							 doi: 10.1016/j.jbo.2022.100455  | 
										
| 36 |  
											  DU Y ,  WANG Y ,  LI Y , et al.  miR-214-5p Regulating differentiation of intramuscular pre-adipocytes in goats via targeting KLF12[J]. Front Genet, 2021, 12, 748629. 
																							 doi: 10.3389/fgene.2021.748629  | 
										
| 37 |  
											  ZAKI-DIZAJI M ,  ABAZARI M F ,  RAZZAGHI H , et al.  GRM7 deficiency, from excitotoxicity and neuroinflammation to neurodegeneration: Systematic review of GRM7 deficient patients[J]. Brain Behavior Immun Health, 2024, 39, 100808. 
																							 doi: 10.1016/j.bbih.2024.100808  | 
										
| 38 |  
											  EDMOND M A ,  HINOJO-PEREZ A ,  EFREM M , et al.  Lipophilic compounds restore function to neurodevelopmental-associated KCNQ3 mutations[J]. Commun Biol, 2024, 7 (1): 1181. 
																							 doi: 10.1038/s42003-024-06873-4  | 
										
| 39 |  
											  SHSNG T ,  CHEN X ,  XUE H , et al.  The PKHD1 gene inhibits tumor proliferation and invasion in intrahepatic cholangiocarcinoma by activating the Notch pathway[J]. Int J Med Sci, 2024, 21 (14): 2655- 2663. 
																							 doi: 10.7150/ijms.95964  | 
										
| 40 |  
											  LIU K ,  CHEN R ,  WANG X , et al.  Biallelic ANKS6 null variants cause notable extrarenal phenotypes in a nephronophthisis patient and lead to hepatobiliary abnormalities by YAP1 deficiency[J]. Clin Genet, 2023, 104 (6): 625- 636. 
																							 doi: 10.1111/cge.14412  | 
										
| 41 |  
											  ANDO K ,  TONG L ,  PENG D , et al.  KCNJ8/ABCC9-containing K-ATP channel modulates brain vascular smooth muscle development and neurovascular coupling[J]. Dev Cell, 2022, 57 (11): 1383- 1399.e7. 
																							 doi: 10.1016/j.devcel.2022.04.019  | 
										
| 42 |  
											  SAMPER N ,  HAREARDÓTTIR L ,  DEPIERREUX D M , et al.  Kir6.1, a component of an ATP-sensitive potassium channel, regulates natural killer cell development[J].  Front Immunol, 2024, 15, 1490250. 
																							 doi: 10.3389/fimmu.2024.1490250  | 
										
| 43 | 朱兰, 江炎庭, 欧阳依娜, 等. 云上黑山羊11号染色体单倍型构建及与产羔性状的关联性分析[J]. 中国畜牧杂志, 2024, 60 (2): 202-207+214. | 
| ZHU L , JIANG Y T , OUYANG Y N , et al. Construction of haplotype on chromosome 11 and association analysis with litter size traits in Yunshang Black Goat[J]. Chinese Journal of Animal Science, 2024, 60 (2): 202-207+214. | |
| 44 | 骆娜, 安炳星, 魏立民, 等. 全基因关联分析筛选文昌鸡体尺性状相关分子标记[J]. 中国农业科学, 2024, 57 (10): 2046- 2060. | 
| LUO N , AN B X , WEI L M , et al. Identification of molecular markers associated with body size traits through genome-wide association analysis in Wenchang Chickens[J]. Scientia Agricultura Sinica, 2024, 57 (10): 2046- 2060. | |
| 45 |  
											  ARATA M ,  SUGIMURA K ,  UEMURA T .  Difference in dachsous levels between migrating cells coordinates the direction of collective cell migration[J]. Dev Cell, 2017, 42 (5): 479- 497.e10. 
																							 doi: 10.1016/j.devcel.2017.08.001  | 
										
| 46 |  
											  LE A P ,  RUPPRRECHT J F ,  MÈGE R M , et al.  Adhesion-mediated heterogeneous actin organization governs apoptotic cell extrusion[J]. Nat Commun, 2021, 12 (1): 397. 
																							 doi: 10.1038/s41467-020-20563-9  | 
										
| 47 |  
											  HAYES A J ,  MELROSE J .  Hs, an ancient molecular recognition and information storage glycosaminoglycan, equips hs-proteoglycans with diverse matrix and cell-interactive properties operative in tissue development and tissue function in health and disease[J]. Int J Mol Sci, 2023, 24 (2): 1148. 
																							 doi: 10.3390/ijms24021148  | 
										
| [1] | LI Cong, SU Jiangtian, LI Yidan, WANG Zhaofei, YU Jie, LEI Chuzhao, DANG Ruihua. Genome-wide Association Study of Body Traits in Dezhou Donkey [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1744-1754. | 
| [2] | WU Jiahao, WU Ziyi, DOU Tengfei, BAI Liyao, ZHANG Yongqian, DONG Lianhe, LI Pengfei, LI Xinjian, HAN Xuelei, LI Xiuling. Genome-wide Association Study of Copy Number Variation in Growth-Related Traits of Yunong-Black Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1110-1119. | 
| [3] | YANG Miaomiao, XIE Li, JIAN Baoyi, LUO Chaowei, XIE Zhuojun, ZHU Piao, ZHOU Tianri, LI Hua, XIANG Hai. Construction and Optimization of Prediction Models for Abdominal Fat Deposition in Adult Hens based on Early Body Size Traits using Machine Learning [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 548-558. | 
| [4] | Hongyan HUANG, Liyun ZHANG, Zhirong HUANG, Zhongping WU, Xumeng ZHANG, Hongjia OUYANG, Junpeng CHEN, Zhenping LIN, Yunbo TIAN, Xiujin LI, Yunmao HUANG. The Study on Population Genetic Diversity and Genome-wide Association Study of Body Weight and Size Traits for Lion-head Geese [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3914-3924. | 
| [5] | Ruiqi ZHANG, Yanqin PANG, Zaishan LI, Xiuguo SHANG, Ganqiu LAN, Jinbiao GUO, Yunxiang ZHAO. Research on Feeding Capacity Selection of Lactating Sows Based on Intelligent Precision Feeding [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2890-2900. | 
| [6] | CUI Shengdi, WANG Kai, ZHAO Zhenjian, CHEN Dong, SHEN Qi, YU Yang, WANG Junge, CHEN Ziyang, YU Shixin, CHEN Jiamiao, WANG Xiangfeng, TANG Guoqing. Identification of Candidate Genes for Pork Texture Traits Using GWAS Combined with Co-localisation of DNA Methylation [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1945-1957. | 
| [7] | Xiaokun LIN, Mengmeng DU, Lisheng ZHOU, Zhengang HUANG, Di WANG, Donghui ZHOU, Xinxin CAO, Jianning HE, Jinshan ZHAO, Hegang LI. Genome-Wide Association Study of Wool Economic Traits in Aohan Fine Wool Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4346-4359. | 
| [8] | LI Keanning, DU Lili, AN Bingxing, DENG Tianyu, LIANG Mang, CAO Sheng, DU Yueying, XU Lingyang, GAO Xue, ZHANG Lupei, LI Junya, GAO Huijiang. Genetic Parameter Estimation and Genome-Wide Association Study for Carcass Traits and Primal Cuts Weight Traits in Huaxi Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3664-3676. | 
| [9] | FAN Chenyu, SHAN Yanju, ZHANG Ming, JI Gaige, JU Xiaojun, TU Yunjie, HE Xi, SHU Jingting, LIU Yifan, ZHANG Haihan. Genome-wide Association Study of Body Weight and Meat Quality Traits in Lihua Mahuang Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 4982-4992. | 
| [10] | LI Hongwei, XU Lingyang, WANG Zezhao, CAI Wentao, ZHU Bo, CHEN Yan, GAO Xue, ZHANG Lupei, GAO Huijiang, LI Junya. Genome-wide Association Study of Slaughter Traits Based on Haplotype in Beef Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12): 4232-4243. | 
| [11] | YANG Xinting, ZHENG Maiqing, TAN Xiaodong, ZHAO Guiping, HUANG Chao, LI Sen, LI Wei, WEN Jie, LIU Ranran. Genetic Parameters Estimation and Key Genes Identification for Meat Quality Traits of Fast-growing Yellow-feather Meat-type Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(9): 2416-2428. | 
| [12] | OUYANG Fengzheng, WANG Ligang, YUE Jingwei, YAN Hua, ZHANG Longchao, HOU Xinhua, LIU Xin, WANG Lixian. Genome-wide Association Study of Copy Number Variations and Quantitative Trait Loci Mapping to Identify Candidate Genes for Body Height Trait in Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(7): 1515-1524. | 
| [13] | LIU Xiaojing, LIU Lu, WANG Jie, CUI Huanxian, ZHAO Guiping, WEN Jie. Genome-wide Association Study of Chicken Blood Glucose Traits Using Whole Genome Resequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(6): 1187-1195. | 
| [14] | WU Qun-qing, ZHANG Long-chao, HUANG Sheng-qiang, WANG Li-xian. A Genome-wide Association Study of Different Size Populations Based on Tail Analysis [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2017, 48(7): 1181-1190. | 
| [15] | XU Pan,ZHANG Zhen,CUI Lei-lei,YANG Bin,DUAN Yan-yu. A Systems Genetics Study of Hematological Traits in a White Duroc × Erhualian Pigs F2 Resource Population [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2016, 47(2): 232-240. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||