1 |
ZHANG S , WEI Y , GAO X , et al. Unveiling the ovarian cell characteristics and molecular mechanism of prolificacy in goats via single-nucleus transcriptomics data analysis[J]. Curr Issues Mol Biol, 2024, 46 (3): 2301- 2319.
|
2 |
LU H , JING Y , ZHANG C , et al. Aging hallmarks of the primate ovary revealed by spatiotemporal transcriptomics[J]. Protein & cell, 2024, 15 (5): 364- 384.
|
3 |
MINOW M A A , MARAND A P , SCHMITZ R J . Leveraging single-cell populations to uncover the genetic basis of complex traits[J]. Annu Rev Genet, 2023, 57, 297- 319.
|
4 |
YANG Q , WU Y , LI M , et al. Single-cell transcriptome study in forensic medicine: prospective applications[J]. Int J Legal Med, 2022, 136 (6): 1737- 1743.
|
5 |
SU P , HOLLAS M A R , BUTUN F A , et al. Single cell analysis of proteoforms[J]. J Proteome Res, 2024, 23 (6): 1883- 1893.
|
6 |
CAO J , YAO Q J , WU J , et al. Deciphering the metabolic heterogeneity of hematopoietic stem cells with single-cell resolution[J]. Cell Metab, 2024, 36 (1): 209- 221.
|
7 |
PHILPOTT M , CRIBBS A P , BROWN T JR , et al. Advances and challenges in epigenomic single-cell sequencing applications[J]. Curr Opin Chem Biol, 2020, 57, 17- 26.
|
8 |
MEYER N , PERALTA J , NYSTUL T . Preparation of drosophila ovarioles for single-cell RNA sequencing[J]. Methods Mol Biol, 2023, 2626, 323- 333.
|
9 |
LYONS A , BROWN J , DAVENPORT K M . Single-cell sequencing technology in ruminant livestock: Challenges and opportunities[J]. Curr Issues Mol Biol, 2024, 46 (6): 5291- 5306.
|
10 |
BAYSOY A , BAI Z , SATIJA R , et al. The technological landscape and applications of single-cell multi-omics[J]. Nat Rev Mol Cell Biol, 2023, 24 (10): 695- 713.
|
11 |
SUN S , SHEN X , LI Y , et al. Single-cell RNA sequencing provides a high-resolution roadmap for understanding the multicellular compartmentation of specialized metabolism[J]. Nat Plants, 2023, 9 (1): 179- 190.
|
12 |
LIM J , PARK C , KIM M , et al. Advances in single-cell omics and multiomics for high-resolution molecular profiling[J]. Exp Mol Med, 2024, 56 (3): 515- 526.
|
13 |
TRAPNELL C . Defining cell types and states with single-cell genomics[J]. Genome Res, 2015, 25 (10): 1491- 1498.
|
14 |
LA H , YOO H , LEE E J , et al. Insights from the applications of single-cell transcriptomic analysis in germ cell development and reproductive medicine[J]. Int J Mol Sci, 2021, 22 (2): 823.
|
15 |
KIM N , KANG H , JO A , et al. Perspectives on single-nucleus RNA sequencing in different cell types and tissues[J]. J Pathol Transl Med, 2023, 57 (1): 52- 59.
|
16 |
TIAN Y , SUN P , LIU W X , et al. Single-cell RNA sequencing of the Mongolia sheep testis reveals a conserved and divergent transcriptome landscape of mammalian spermatogenesis[J]. FASEB J, 2022, 36 (6): e22348.
|
17 |
LIU Z , ZHANG G , DENG M , et al. Inhibition of lysine-specific histone demethylase 1A results in meiotic aberration during oocyte maturation in vitro in goats[J]. Theriogenology,, 2020, 143, 168- 178.
|
18 |
TANG F , BARBACIORU C , WANG Y , et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods, 2009, 6 (5): 377- 382.
|
19 |
NAVIN N , KENDALL J , TROGE J , et al. Tumour evolution inferred by single-cell sequencing[J]. Nature, 2011, 472 (7341): 90- 94.
|
20 |
RODRIQUES S G , STICKELS R R , GOEVA A , et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution[J]. Science, 2019, 363 (6434): 1463- 1467.
|
21 |
SHAREEF S J , BEVILL S M , RAMAN A T , et al. Extended-representation bisulfite sequencing of gene regulatory elements in multiplexed samples and single cells[J]. Nat Biotechnol, 2021, 39 (9): 1086- 1094.
|
22 |
XU W , WEN Y , LIANG Y , et al. A plate-based single-cell ATAC-seq workflow for fast and robust profiling of chromatin accessibility[J]. Nat Protoc, 2021, 16 (8): 4084- 4107.
|
23 |
FAN X , TANG D , LIAO Y , et al. Single-cell RNA-seq analysis of mouse preimplantation embryos by third-generation sequencing[J]. PLoS Biol, 2020, 18 (12): e3001017.
|
24 |
KUPPE C , RAMIREZ F R O , LI Z , et al. Spatial multi-omic map of human myocardial infarction[J]. Nature, 2022, 608 (7924): 766- 777.
|
25 |
HWANG B , LEE J H , BANG D . Single-cell RNA sequencing technologies and bioinformatics pipelines[J]. Exp Mol Med, 2018, 50 (8): 1- 14.
|
26 |
LEDDA S , BOGLIOLO L , BEBBERE D , et al. Characterization, isolation and culture of primordial germ cells in domestic animals: recent progress and insights from the ovine species[J]. Theriogenology, 2010, 74 (4): 534- 543.
|
27 |
JUENGEL J L , SAWYER H R , SMITH P R , et al. Origins of follicular cells and ontogeny of steroidogenesis in ovine fetal ovaries[J]. Mol Cell Endocrinol, 2002, 191 (1): 1- 10.
|
28 |
MCNATTY K P , SMITH P , HUDSON N L , et al. Development of the sheep ovary during fetal and early neonatal life and the effect of fecundity genes[J]. J Reprod Fertil Suppl, 1995, 49, 123- 135.
|
29 |
SAWYER H R , SMITH P , HEATH D A , et al. Formation of ovarian follicles during fetal development in sheep[J]. Biol Reprod, 2002, 66 (4): 1134- 1150.
|
30 |
SMITH P , O W S , HUDSON N L , et al. Effects of the Booroola gene (FecB) on body weight, ovarian development and hormone concentrations during fetal life[J]. J Reprod Fertil, 1993, 98 (1): 41- 54.
|
31 |
ALI A , DERAR D R . Relationships among the corpus luteum, follicles and conceptus in sheep[J]. Anat Histol Embryol, 2021, 50 (1): 65- 71.
|
32 |
LIU K , ZHANG L , QI Q , et al. Growth hormone treatment improves the development of follicles and oocytes in prepubertal lambs[J]. J Ovarian Res, 2023, 16 (1): 132.
|
33 |
YAO Y C , SONG X T , ZHAI Y F , et al. Transcriptome analysis of sheep follicular development during prerecruitment, dominant, and mature stages after FSH superstimulation[J]. Domest Anim Endocrinol, 2021, 74, 106563.
|
34 |
CHEN Y , WU Y S , LIN J P , et al. Transcriptome profiles of pre-pubertal and adult in vitro matured ovine oocytes obtained from FSH-stimulated animals[J]. Reprod Domest Anim, 2021, 56 (8): 1085- 1094.
|
35 |
BARROS V R P , MONTE A P O , SANTOS J M S , et al. Effects of melatonin on the in vitro growth of early antral follicles and maturation of ovine oocytes[J]. Domest Anim Endocrinol, 2020, 71, 106386.
|
36 |
NWACHUKWU C U , WOAD K J , BARNES N , et al. Maternal protein restriction affects fetal ovary development in sheep[J]. Reprod Fertil, 2021, 2 (2): 161- 171.
|
37 |
LEA R G , ANDRADE L P , RAE M T , et al. Effects of maternal undernutrition during early pregnancy on apoptosis regulators in the ovine fetal ovary[J]. Reproduction, 2006, 131 (1): 113- 124.
|
38 |
MURDOCH W J , VAN KIRK E A , VONNAHME K A , et al. Ovarian responses to undernutrition in pregnant ewes, USA[J]. Reprod Biol Endocrinol,, 2003, 1, 6.
|
39 |
FAN X , MOUSTAKAS I , BIALECKA M , et al. Single-cell transcriptomics analysis of human small antral follicles[J]. Int J Mol Sci, 2021, 22 (21): 11955.
|
40 |
QI L , LIU B , CHEN X , et al. Single-cell transcriptomic analysis reveals mitochondrial dynamics in oocytes of patients with polycystic ovary syndrome[J]. Front Genet, 2020, 11, 396.
|
41 |
GE T , WEN Y , LI B , et al. Single-cell sequencing reveals the reproductive variations between primiparous and multiparous Hu ewes[J]. J Anim Sci Biotechnol, 2023, 14 (1): 144.
|
42 |
HAN B , TIAN D , LI X , et al. Multiomics analyses provide new insight into genetic variation of reproductive adaptability in Tibetan sheep[J]. Mol Biol Evol, 2024, 41 (3): 58.
|
43 |
GUO X , FANG Y , LIANG R , et al. Single-cell RNA-seq reveals the effects of the FecB mutation on the transcriptome profile in ovine cumulus cells[J]. Sci Rep, 2024, 14 (1): 13087.
|
44 |
TIAN H , REN P , LIU K , et al. Transcriptomic comparison of ovarian granulosa cells between adult sheep and prepubertal lambs[J]. BMC Genomics, 2022, 23 (1): 151.
|
45 |
LI Z , WANG J , ZHAO Y , et al. scRNA-seq of ovarian follicle granulosa cells from different fertility goats reveals distinct expression patterns[J]. Reprod Domest Anim, 2021, 56 (5): 801- 811.
|
46 |
KINNEAR H M , TOMASZEWSKI C E , CHANG A L , et al. The ovarian stroma as a new frontier[J]. Reproduction, 2020, 160 (3): 25- 39.
|
47 |
STÉVANT I , KVHNE F , GREENFIELD A , et al. Dissecting cell lineage specification and sex fate determination in gonadal somatic cells using single-cell transcriptomics[J]. Cell Rep, 2019, 26 (12): 3272- 3283.
|
48 |
SEßENHAUSEN P , CABAN K M , KREITMAIR N , et al. An ovarian phenotype of alpha 7 nicotinic receptor knockout mice[J]. Reproduction, 2023, 166 (3): 221- 234.
|
49 |
ZUO W , LIU X , CHEN J , et al. Single-cell sequencing provides insights into the landscape of ovary in PCOS and alterations induced by CUMS[J]. Am J Physiol Endocrinol Metab, 2023, 325 (4): 346- 362.
|
50 |
JIA G X , MA W J , WU Z B , et al. Single-cell transcriptomic characterization of sheep conceptus elongation and implantation[J]. Cell Rep, 2023, 42 (8): 112860.
|
51 |
WU H , ZHU R , ZHENG B , et al. Single-cell sequencing reveals an intrinsic heterogeneity of the preovulatory follicular microenvironment[J]. Biomolecules, 2022, 12 (2): 231.
|
52 |
MANTRI M , ZHANG H H , SPANOS E , et al. A spatiotemporal molecular atlas of the ovulating mouse ovary[J]. Proc Natl Acad Sci USA, 2024, 121 (5): e2317418121.
|
53 |
WANG C , ZHAO Y , YUAN Z , et al. Genome-wide identification of mRNAs, lncRNAs, and proteins, and their relationship with sheep fecundity[J]. Front Genet, 2021, 12, 750947.
|
54 |
ZHAO Z H , MA J Y , MENG T G , et al. Single-cell RNA sequencing reveals the landscape of early female germ cell development[J]. FASEB J, 2020, 34 (9): 12634- 12645.
|
55 |
NGUYEN P M N , CHANG M E , CHAUVIN M , et al. AMH protects the ovary from doxorubicin by regulating cell fate and the response to DNA damage[J]. Proc Natl Acad Sci USA, 2025, 122 (5): e2414734122.
|
56 |
MEINSOHN M C , SAATCIOGLU H D , WEI L , et al. Single-cell sequencing reveals suppressive transcriptional programs regulated by MIS/AMH in neonatal ovaries[J]. Proc Natl Acad Sci USA, 2021, 118 (20): e2100920118.
|
57 |
CALONGA-SOLÍS V , FABBRI-SCALLET H , OTT F , et al. MYRF: A new regulator of cardiac and early gonadal development-insights from single cell RNA sequencing analysis[J]. J Clin Med, 2022, 11 (16): 4858.
|
58 |
BUAAS F W , VAL P , SWAIN A . The transcription co-factor CITED2 functions during sex determination and early gonad development[J]. Hum Mol Genet, 2009, 18 (16): 2989- 3001.
|
59 |
MATTICK J S , AMARAL P P , CARNINCI P , et al. Long non-coding RNAs: definitions, functions, challenges and recommendations[J]. Nat Rev Mol Cell Biol, 2023, 24 (6): 430- 447.
|
60 |
LIU A , LIU M , LI Y , et al. Differential expression and prediction of function of lncRNAs in the ovaries of low and high fecundity Hanper sheep[J]. Reprod Domest Anim, 2021, 56 (4): 604- 620.
|
61 |
MIAO X , LUO Q , ZHAO H , et al. Co-expression analysis and identification of fecundity-related long non-coding RNAs in sheep ovaries[J]. Sci Rep, 2016, 6, 39398.
|