Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (7): 3164-3176.doi: 10.11843/j.issn.0366-6964.2025.07.012
• Animal Genetics and Breeding • Previous Articles Next Articles
ZHANG Jialiang1,3(), HUANG Chang1, YANG Yonglin2, YANG Hua2, BAI Wenlin3, MA Yuehui1, ZHAO Qianjun1,*(
)
Received:
2024-10-14
Online:
2025-07-23
Published:
2025-07-25
Contact:
ZHAO Qianjun
E-mail:18340756126@163.com;zhaoqianjun@caas.cn
CLC Number:
ZHANG Jialiang, HUANG Chang, YANG Yonglin, YANG Hua, BAI Wenlin, MA Yuehui, ZHAO Qianjun. Genetic Structure and Wool Trait Selection Signatures Analysis of Chinese Sheep Populations Based on 50K Liquid SNP Chip[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3164-3176.
Table 1
Information of the sheep populations in this study"
群体 Population | 英文名称 English name | 缩写 Abbreviation | 样本量/只 Sample | 地理位置 Location | 羊毛类型 Wool type |
欧拉羊 | Oula sheep | OLS | 15 | 青海省河南县 | 粗毛型 |
塔什库尔干羊 | Tashkurgan sheep | TSK | 13 | 新疆塔什库尔干县 | 粗毛型 |
阿勒泰羊 | Altay sheep | ALT | 15 | 新疆福海县 | 粗毛型 |
藏绵羊 | Zangxi sheep | ZXS | 16 | 四川省甘孜州石渠县 | 粗毛型 |
青海毛肉兼用细毛羊 | Qinghai Wool-mutton Type sheep | QHS | 12 | 青海省海晏县 | 细毛型 |
甘肃高山细毛羊 | Cansu Alpine Merino | GSS | 10 | 甘肃省肃南县 | 细毛型 |
中国美利奴羊 | Chinese Merino | CME | 15 | 新疆石河子市 | 细毛型 |
敖汉细毛羊 | Aohan Merino | AHS | 11 | 内蒙古赤峰市敖汉旗 | 细毛型 |
Table 3
Candidate genes associated with wool trait"
基因 Gene | 基因描述 Genes description | 染色体 Chromosome | 功能 Function | 参考文献 Reference |
IRF4 | Interferon regulatory factor 4 | 20 | 与黑色素合成、递送和分布有关 | [ |
JAK2 | Janus kinase-2 | 2 | 可能与毛囊和毛发生长相关 | [ |
RAC2 | Ras-related C3 botulinum toxin substrate 2 | 3 | 间接调控真皮乳头细胞的功能 | [ |
IDUA | Alpha-L-iduronidase | 6 | 与羊毛性状相关 | [ |
SDHA | Succinate dehydrogenase subunit-A | 16 | 皮肤分子生物学研究的管家基因 | [ |
SELENBP1 | Selenium-binding protein 1 | 1 | 与羊的被毛生长相关 | [ |
1 | ALBERTO F J , BOYER F , OROZCO-TERWENGEL P , et al. Convergent genomic signatures of domestication in sheep and goats[J]. Nat Commun, 2018, 9 (1): 813. |
2 | DENG J , XIE X L , WANG D F , et al. Paternal origins and migratory episodes of domestic sheep[J]. Curr Biol, 2020, 30 (20): 4085- 4095. |
3 | GRANERO A , ANAYA G , DEMYDA-PEYRÁS S , et al. Genomic population structure of the main historical genetic lines of Spanish Merino sheep[J]. Animals (Basel), 2022, 12 (10): 1327. |
4 | GRANERO A , ANAYA G , ALCALDE M J . Morphostructural differences between the historical genetic lines of the Spanish Merino sheep[J]. Animals (Basel), 2023, 13 (2): 313. |
5 | TONG X , CHEN D , HU J , et al. Accurate haplotype construction and detection of selection signatures enabled by high quality pig genome sequences[J]. Nat Commun, 2023, 14 (1): 5126. |
6 | ZHONG Z Q , LI R , WANG Z , et al. Genome-wide scans for selection signatures in indigenous pigs revealed candidate genes relating to heat tolerance[J]. Animal, 2023, 17 (7): 100882. |
7 | 马烨, 刘玉强, 吴煜伟, 等. 基于全基因组重测序检测中国地方猪的体型选择信号[J]. 中国畜牧兽医, 2024 (8): 3438- 3446. |
MA Y , LIU Y Q , WU Y W , et al. Detection of body shape selection signals in Chinese indigenous pigs based on whole genome resequencing[J]. China Animal Husbandry & Veterinary Medicine, 2024 (8): 3438- 3446. | |
8 | XU L , ZHOU K , HUANG X , et al. Whole-genome resequencing provides insights into the diversity and adaptation to desert environment in Xinjiang Mongolian cattle[J]. BMC Genomics, 2024, 25 (1): 176. |
9 | AYALEW W , WU X , TAREKEGN G M , et al. Whole genome scan uncovers candidate genes related to milk production traits in Barka cattle[J]. Int J Mol Sci, 2024, 25 (11): 6142. |
10 | LUKIC B , CURIK I , DRZAIC I , et al. Genomic signatures of selection, local adaptation and production type characterisation of East Adriatic sheep breeds[J]. J Anim Sci Biotechnol, 2023, 14 (1): 142. |
11 | AN Z X , SHI L G , HOU G Y , et al. Genetic diversity and selection signatures in Hainan black goats revealed by whole-genome sequencing data[J]. Animal, 2024, 18 (6): 101147. |
12 |
王婷, 张元庆, 闫益波, 等. "特藏寒羊"群体遗传结构分析与选择信号的对比分析[J]. 畜牧兽医学报, 2024, 55 (7): 2913- 2926.
doi: 10.11843/j.issn.0366-6964.2024.07.012 |
WANG T , ZHANG Y Q , YAN Y B , et al. The genetic structure analysis and the comparative analysis of selection signals in 'Tezanghan' sheep[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (7): 2913- 2926.
doi: 10.11843/j.issn.0366-6964.2024.07.012 |
|
13 | HAN H , RANDHAWA I A S , MACHUGH D E , et al. Selection signatures for local and regional adaptation in Chinese Mongolian horse breeds reveal candidate genes for hoof health[J]. BMC Genomics, 2023, 24 (1): 35. |
14 | MOUSAVI S F , RAZMKABIR M , ROSTAMZADEH J , et al. Genetic diversity and signatures of selection in four indigenous horse breeds of Iran[J]. Heredity (Edinb), 2023, 131 (2): 96- 108. |
15 | REN X , GUAN Z , ZHAO X , et al. Systematic selection signature analysis of Chinese gamecocks based on genomic and transcriptomic data[J]. Int J Mol Sci, 2023, 24 (6): 5868. |
16 | 胡晓玉, 肖成朋, 高超群, 等. 基于全基因组SNPs标记对河南斗鸡遗传多样性及选择信号分析[J]. 河南农业大学学报, 2024, 58 (3): 394- 402. |
HU X Y , XIAO C P , GAO C Q , et al. Analysis of the genetic diversity and selection signals of Henan Game chicken using genome-wide SNPs[J]. Journal of Henan Agricultural University, 2024, 58 (3): 394- 402. | |
17 |
吴平先, 王俊戈, 刁淑琪, 等. 基于填充测序数据的荣昌猪群体遗传结构和选择信号分析[J]. 畜牧兽医学报, 2025, 56 (1): 147- 158.
doi: 10.11843/j.issn.0366-6964.2025.01.014 |
WU P X , WANG J G , DIAO S Q , et al. Analysis of genetic architecture characteristics and selection signature by imputed whole genome sequencing data in Rongchang pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56 (1): 147- 158.
doi: 10.11843/j.issn.0366-6964.2025.01.014 |
|
18 | LV F H , CAO Y H , LIU G J , et al. Whole-genome resequencing of worldwide wild and domestic sheep elucidates genetic diversity, introgression, and agronomically important loci[J]. Mol Biol Evol, 2022, 39 (2): 353. |
19 | LIANG B , BAI T , ZHAO Y , et al. Two mutations at KRT74 and EDAR synergistically drive the fine-wool production in Chinese sheep[J]. J Adv Res, 2024, 57, 1- 13. |
20 | LANGBEIN L , ROGERS M A , PRAETZEL S , et al. K6irs1, K6irs2, K6irs3, and K6irs4 represent the inner-root-sheath-specific type Ⅱ epithelial keratins of the human hair follicle[J]. J Invest Dermatol, 2003, 120 (4): 512- 522. |
21 | TANAKA S , MIURA I , YOSHIKI A , et al. Mutations in the helix termination motif of mouse type I IRS keratin genes impair the assembly of keratin intermediate filament[J]. Genomics, 2007, 90 (6): 703- 711. |
22 | HEADON D J , OVERBEEK P A . Involvement of a novel Tnf receptor homologue in hair follicle induction[J]. Nat Genet, 1999, 22 (4): 370- 374. |
23 | MOU C , JACKSON B , SCHNEIDER P , et al. Generation of the primary hair follicle pattern[J]. Proc Natl Acad Sci U S A, 2006, 103 (24): 9075- 9080. |
24 | CAI Y , FU W , CAI D , et al. Ancient genomes reveal the evolutionary history and origin of cashmere-producing goats in China[J]. Mol Biol Evol, 2020, 37 (7): 2099- 2109. |
25 | LI Y , GONG Y , ZHANG Z , et al. Whole-genome sequencing reveals selection signals among Chinese, Pakistani, and Nepalese goats[J]. J Genet Genom, 2023, 50 (5): 362- 365. |
26 | FATIMA N , JIA L , LIU B , et al. A homozygous missense mutation in the fibroblast growth factor 5 gene is associated with the long-hair trait in Angora rabbits[J]. BMC Genomics, 2023, 24 (1): 298. |
27 | GUO J , ZHONG J , LIU G E , et al. Identification and population genetic analyses of copy number variations in six domestic goat breeds and Bezoar ibexes using next-generation sequencing[J]. BMC Genomics, 2020, 21 (1): 840. |
28 | LI Y , SONG S , ZHANG Z , et al. A deletion variant within the FGF5 gene in goats is associated with gene expression levels and cashmere growth[J]. Animal Genetics, 2022, 53 (5): 657- 664. |
29 | WANG X , CAI B , ZHOU J , et al. Disruption of FGF5 in cashmere goats using CRISPR/Cas9 results in more secondary hair follicles and longer fibers[J]. PLoS One, 2016, 11 (10): 0164640. |
30 | LI H , DURBIN R . Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25 (14): 1754- 1760. |
31 | MCKENNA A , HANNA M , BANKS E , et al. The genome analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Res, 2010, 20 (9): 1297- 1303. |
32 | CHANG C C , CHOW C C , TELLIER L C , et al. Second-generation PLINK: rising to the challenge of larger and richer datasets[J]. Gigascience, 2015, 4, 7. |
33 | TAMURA K , STECHER G , KUMAR S . MEGA11: Molecular evolutionary genetics analysis version 11[J]. Mol Biol Evol, 2021, 38 (7): 3022- 3027. |
34 | LETUNIC I , BORK P . Interactive tree of life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool[J]. Nucleic Acids Res, 2024, 52 (W1): 78- 82. |
35 | ALEXANDER D H , NOVEMBRE J , LANGE K . Fast model-based estimation of ancestry in unrelated individuals[J]. Genome Res, 2009, 19 (9): 1655- 1664. |
36 | DANECEK P , AUTON A , ABECASIS G , et al. The variant call format and VCFtools[J]. Bioinformatics, 2011, 27 (15): 2156- 2158. |
37 | QUINLAN A R , HALL I M . BEDTools: a flexible suite of utilities for comparing genomic features[J]. Bioinformatics, 2010, 26 (6): 841- 842. |
38 | CINGOLANI P , PLATTS A , WANG L L , et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3[J]. Fly (Austin), 2012, 6 (2): 80- 92. |
39 | BU D , LUO H , HUO P , et al. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis[J]. Nucleic Acids Res, 2021, 49 (W1): 317- 325. |
40 | TANG D , CHEN M , HUANG X , et al. SRplot: A free online platform for data visualization and graphing[J]. PLoS One, 2023, 18 (11): 0294236. |
41 | WU C , MA S , ZHAO B , et al. Drivers of plateau adaptability in cashmere goats revealed by genomic and transcriptomic analyses[J]. BMC Genomics, 2023, 24 (1): 428. |
42 | ZHANG W , LUOSANG C , YUAN C , et al. Selection signatures of wool color in Gangba sheep revealed by genome-wide SNP discovery[J]. BMC Genomics, 2024, 25 (1): 606. |
43 | SHANG Y , LI M , ZHANG L , et al. Exosomes derived from mouse vibrissa dermal papilla cells promote hair follicle regeneration during wound healing by activating Wnt/β-catenin signaling pathway[J]. J Nanobiotechnol, 2024, 22 (1): 425. |
44 | XU X L , WU S J , QI S Y , et al. Increasing GSH-Px activity and activating Wnt pathway promote fine wool growth in FGF5-edited sheep[J]. Cells, 2024, 13 (11): 985. |
45 | FU J , ZHANG X , WANG D , et al. Analysis of the long non-coding and messenger RNA expression profiles in the skin tissue of super Merino and Small-Tailed Han sheep[J]. Curr Issues Mol Biol, 2024, 46 (9): 9588- 9606. |
46 | SWEET-JONES J , YURCHENKO A A , IGOSHIN A V , et al. Resequencing and signatures of selection scan in two Siberian native sheep breeds point to candidate genetic variants for adaptation and economically important traits[J]. Anim Genet, 2021, 52 (1): 126- 131. |
47 | ZHANG J , DENG C , LI J , et al. Transcriptome-based selection and validation of optimal house-keeping genes for skin research in goats (Capra hircus)[J]. BMC Genomics, 2020, 21 (1): 493. |
48 | LI Y , ZHOU G , ZHANG R , et al. Comparative proteomic analyses using iTRAQ-labeling provides insights into fiber diversity in sheep and goats[J]. J Proteomics, 2018, 172, 82- 88. |
49 | LI S , CHEN W , ZHENG X , et al. Comparative investigation of coarse and fine wool sheep skin indicates the early regulators for skin and wool diversity[J]. Gene, 2020, 758, 144968. |
50 | LI S , CHEN W , ZHENG X , et al. Transcriptome reveals long non-coding RNAs and mRNAs involved in primary wool follicle induction in Carpet sheep fetal skin[J]. Front Physiol, 2018, 9, 446. |
51 | YUE Y , GUO T , YUAN C , et al. Integrated analysis of the roles of long noncoding RNA and coding RNA expression in sheep (Ovis aries) skin during initiation of secondary hair follicle[J]. PLoS One, 2016, 11 (6): 0156890. |
52 | JIN M , FAN W , PIAO J , et al. Effects of lncRNA MTC on protein expression in skin fibroblasts of Liaoning Cashmere goat based on iTRAQ technique[J]. Anim Biotechnol, 2023, 34 (7): 2817- 2826. |
53 | MA S , LONG L , HUANG X , et al. Transcriptome analysis reveals genes associated with wool fineness in merinos[J]. Peer J, 2023, 11, 15327. |
54 | WANG W , LI Z , XIE G , et al. Convergent genomic signatures of cashmere traits: Evidence for natural and artificial selection[J]. Int J Mol Sci, 2023, 24 (2): 1165. |
55 | SUZUKI K , YAMAGUCHI Y , VILLACORTE M , et al. Embryonic hair follicle fate change by augmented β-catenin through Shh and Bmp signaling[J]. Development, 2009, 136 (3): 367- 372. |
56 | MESA K R , ROMPOLAS P , ZITO G , et al. Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool[J]. Nature, 2015, 522 (7554): 94- 97. |
57 | WANG S , HU T , HE M , et al. Defining ovine dermal papilla cell markers and identifying key signaling pathways regulating its intrinsic properties[J]. Front Vet Sci, 2023, 10, 1127501. |
58 | TIAN D , HAN B , LI X , et al. Genetic diversity and selection of Tibetan sheep breeds revealed by whole-genome resequencing[J]. Anim Biosci, 2023, 36 (7): 991- 1002. |
59 | YI W , HU M , SHI L , et al. Whole genome sequencing identified genomic diversity and candidated genes associated with economic traits in Northeasern Merino in China[J]. Front Genet, 2024, 15, 1302222. |
60 | MIRANDA M , AVILA I , ESPARZA J , et al. Defining a role for g-protein coupled receptor/cAMP/CRE-binding protein signaling in hair follicle stem cell activation[J]. J Invest Dermatol, 2022, 142 (1): 53- 64. |
61 | KIM J , SHIN J Y , CHOI Y H , et al. Anti-Hair loss effect of adenosine is exerted by cAMP mediated Wnt/β-catenin pathway stimulation via modulation of Gsk3β activity in cultured human dermal papilla cells[J]. Molecules, 2022, 27 (7): 2184. |
62 | PARK S , KANG W , CHOI D , et al. Nonanal stimulates growth factors via cyclic adenosine monophosphate (cAMP) signaling in human hair follicle dermal papilla cells[J]. Int J Mol Sci, 2020, 21 (21): 8054. |
63 | ZHANG W , JIN M , LI T , et al. Whole-genome resequencing reveals selection signal related to sheep wool fineness[J]. Animals (Basel), 2023, 13 (18): 2944. |
64 | MADY L J , AJIBADE D V , HSAIO C , et al. The transient role for calcium and vitamin d during the developmental hair follicle cycle[J]. J Invest Dermatol, 2016, 136 (7): 1337- 1345. |
[1] | WEI Kangkang, MA Gui, LI Wendi, TIAN Yu, ZHANG Lingkai, ZHU Jihong, HU Yamei. Research Progress of Single-Cell Sequencing Technology in the Growth and Development Process of Sheep Ovaries [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3080-3087. |
[2] | LAN Mingxi, QIN Qing, ZHANG Chongyan, LIU Zhichen, ZHANG Jingwen, ZHAO Dan, WU Danni, QIN Tian, WANG Zhixin, LIU Zhihong. Determination and Analysis of Slaughtering Performance and Meat Quality of Different Parts of Ujumqin Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3177-3187. |
[3] | LUO Ruijie, WANG Jiankui, CAO Suying. Integrated Sequencing Analysis of lncRNA and mRNA Related to Ancestral-like Coarse in Aohan Fine Wool Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2685-2700. |
[4] | WU Jianliang, SU Yang, MAO Ruihan, ZHOU Lei, YAN Tiantian, LI Zhi, LIU Jianfeng. Design and Effect Evaluation of A Whole-Genome Low-Density SNP Chip in Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2733-2740. |
[5] | ZHU Aiwen, WANG Jian, ZHU Gehui, LIU Haixia, PINGCUO Bandan, WANG Jun, DEQING Zhuoga, YAN Wei, HAN Dayong. Zearalenone Induced Proliferation, Apoptosis, Oxidative Stress and NAC Protective Mechanism of Sertoli Cells in Pengbo Semi-fine Wool Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2752-2764. |
[6] | GU Bo, WANG Anqi, YU Xinmiao, GUO Juntong, YANG Yi, DENG Yijie, JIANG Huaizhi. Construction of Ovarian ceRNA Networks and Screening of Key miRNA in Two Different Breeds of Sheep Based on Whole Transcription Sequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2765-2777. |
[7] | WANG Qinqian, GAO Zhendong, LU Ying, MA Ruoshan, DENG Weidong, HE Xiaoming. Research Progress of Whole Genome Resequencing in Chinese Indigenous Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2026-2037. |
[8] | QIAO Liying, WANG Wannian, ZHANG Li, PANG Zhixu, ZHANG Siying, LI Yifan, LIU Wenzhong. Machine Learning Methods for Sheep Breed Classification Based on Genomic Markers [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2157-2167. |
[9] | SUN Guoxin, LI Yunhua, SAI Yin, GUO Wenhua, ZHAO Yanhong, ZHANG Manxin, LIU Jiasen. Population Structure Analysis and Economic Traits Related Selection Signal Detection of Hu Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2168-2181. |
[10] | LI Xiaowei, TIAN Wei, LIU Yuan, LI Huixia. Study on the Difference of m6A Methylation Modification in Ovarian Granulosa Cells of Hu Sheep under Heat Stress [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1712-1721. |
[11] | MA Yingtian, JIANG Luyao, LI Zengkai, QIN Jianping, ZHAO Jianhua, HE Yufang, SONG Yuxuan, ZHANG Lei. Effect of Cyanidin-3-rutinoside on Cryopreservation of Semen of Dairy Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1768-1778. |
[12] | WANG Haoyu, MA Keyan, LI Taotao, LI Dengpan, ZHAO Qing, MA Youji. Population Genetic Diversity and Population Structure Analysis of Small-boned Goat Based on Specific-Locus Amplified Fragment Sequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1170-1179. |
[13] | HU Xin, YOU Wei, JIANG Fugui, CHENG Haijian, SUN Zhigang, SONG Enliang. Analysis of Genetic Diversity and Population Structure of Simmental Cattle Based on Whole Genome Resequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1189-1202. |
[14] | YANG Yang, LI Liangyuan, WAN Pengcheng, LU Shouliang, LIU Changbin, YANG Hua, WANG Limin, DAI Rong, ZHOU Ping. Screening and Analysis of Core Genes and Key lncRNAs for Seasonal Estrus Traits in Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1264-1277. |
[15] | HE Yu, WANG Xiangyu, DI Ran, CHU Mingxing, LIANG Chen. BMP4/SMAD4 Downregulates GJA1 Gene Expression to Affect the Gap Junctional Intercellular Communication Activity in Sheep Ovarian Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 679-688. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||