Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (9): 3812-3823.doi: 10.11843/j.issn.0366-6964.2024.09.007
• Review • Previous Articles Next Articles
Yuxin GAO1,2(), Qing LIU2, Jilan CHEN1, Hui MA1,*()
Received:
2023-10-13
Online:
2024-09-23
Published:
2024-09-27
Contact:
Hui MA
E-mail:gaoyuxin214@163.com;caumah@163.com
CLC Number:
Yuxin GAO, Qing LIU, Jilan CHEN, Hui MA. Research Advances in the Mechanism of Parasite-host Interaction Mediated by miRNAs[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3812-3823.
Table 1
Functions of miRNAs from different sources"
寄生虫 Parasites | miRNAs名称 The name of miRNAs | 来源 Sources | 产生细胞 Producing cells | 作用 Functions | 机制 Mechanisms | 参考文献 References |
寄生虫来源 Sources of parasites | ||||||
弓形虫 Toxoplasma | miR-60a | 弓形虫 | 虫体细胞 | 辅助功能丧失分析,推进神经病理学过程 | 下调靶标基因TgHoDI和TgLDH1的表达 | Crater等[ |
多房棘球绦虫 Echinococcus multilocular | miR-71 | 多房棘球绦虫 | 虫体细胞 | 可作为潜在的选择性药物靶标 | 调节虫体发育初期相关靶点;下调miRNA功能所必需的蛋白质的表达 | Pérez等[ |
miR-4989-3p | 多房棘球绦虫 | 虫体细胞 | 在寄生虫发病机制中发挥调节作用 | 抑制巨噬细胞产生NO,调节细胞因子和LPS/TLR4信号通路中主要成分的表达 | 郭宝平[ | |
克氏锥虫 Trypanosoma cruzi | miR-190b | 克氏锥虫 | 虫体细胞 | 抑制感染细胞的存活 | 抑制PTEN蛋白表达,抑制磷脂酰肌醇3激酶(PI3K)/Akt通路的激活 | Monteiro等[ |
曼氏血吸虫 Schistosoma mansoni | miR-277/4989 | 曼氏血吸虫 | 虫体细胞 | 调节幼虫发育过程 | 在不同发育时期表达量会发生变化 | Protasio等[ |
日本血吸虫 Schistosoma japonicum | miR-7-5p | 日本血吸虫 | 虫体细胞 | 选择性影响人和小鼠肿瘤细胞的生长和迁移过程,增强宿主对癌症的抵抗力 | 靶向肝细胞的SKP2基因 | Hu等[ |
miR-3096 | 日本血吸虫 | 虫体细胞 | 抑制肿瘤细胞的生长和迁移 | 靶向PIK3C2A基因,下调mTORC1信号通路的表达 | Lin等[ | |
宿主来源 Sources of hosts | ||||||
利什曼原虫 Leishmania | miR-let-7e | 小鼠 | 巨噬细胞 | 调节抗炎因子的表达;破坏宿主免疫应答 | 调节T细胞受体通路中基因的表达,影响NOS2的表达及NO的产生 | Muxel等[ |
miR-346 | 人 | 巨噬细胞 | 抗寄生虫药物靶点;调节免疫反应和内质网(ER)应激下的细胞存活 | 靶向相关基因 | Diotallevi等[ | |
miR-294, miR-721 | 小鼠 | 巨噬细胞 | 被诱导表达后可控制基因的表达和增加,调控免疫反应 | 靶向NOS2和L-精氨酸代谢诱导巨噬细胞 | Muxel等[ | |
miR-6540 | 小鼠 | 巨噬细胞 | 影响寄生虫在巨噬细胞内的感染 | 靶向作用于磷脂酰丝氨酸,具体互作机制尚待阐明 | Tiwari等[ | |
miR-3620, miR-6385 | 小鼠 | 巨噬细胞 | 使宿主合成大量铁,满足寄生虫对铁的需求;增强巨噬细胞对寄生虫的清除 | 调控铁稳态相关基因的表达;下调缺氧诱导基因的表达 | Tiwari等[ | |
miR-30e, miR-302d, miR-294, miR-302d | 小鼠 | 巨噬细胞 | 控制利什曼原虫对宿主的感染性 | 影响Nos2 mRNA的表达和NO的产生;调节Tnf的mRNA水平,改变Ccl2/Mcp-1的mRNA | Fernandes等[ | |
伯氏疟原虫 Plasmodium berghei | miR-19a-3p, miR-19b-3p, miR-223-3p | 小鼠 | 脑细胞 | 内吞作用;黏附连接 | 靶向FoxO转录因子和TGF-β信号通路中的基因,参与其表达 | Martin-Alonso等[ |
恶性疟原虫 Plasmodium falciparum | miR-3135b, miR-6780b-5p, miR-1246, miR-6126, miR-3613-5p | 人 | 全血细胞 | 可作为治疗靶点和潜在生物标志物 | 参与TNF信号通路和T细胞受体信号通路 | Li等[ |
miR-19b-3p, miR-19a-3p, miR-223-3p, miR142-3p | 小鼠 | 脑细胞 | 通过下调通路中基因的表达引发脑型疟疾的神经综合征 | 参与调控TGF-β和内吞作用信号通路 | Martin-Alonso等[ | |
miR-146a | 人 | 红细胞 | 抑制免疫细胞的功能 | 阻碍参与IFNγ信号通路的信号转导与转录激活因子(Stat1) | Prabhu等[ | |
miR-451 | 人 | 红细胞 | 促进了寄生虫入侵、存活以及诱导配子体的生成 | 调节cAMP依赖蛋白激酶(PKA-R)的表达,使PKA的催化活性增加 | Wilde等[ | |
隐孢子虫 Cryptosporidium | miR-21 | 小鼠 | 肠道细胞 | 细胞溶解,清除寄生虫 | 靶向CCL20基因,下调趋化因子 | Guesdon等[ |
miR-98, let 7 | 人 | 胆管上皮细胞 | 介导细胞因子信号蛋白抑制剂(SOCS4)翻译抑制,调节胆管上皮细胞抗菌反应 | 诱导胆管上皮细胞中的顺势作用(CIS)表达,靶向SOCS4的3′未翻译区 | Hu等[ | |
日本血吸虫 Schistosoma japonicum | miR-155 | 小鼠 | CD4+ T细胞 | 多种免疫细胞中的多效调节因子 | 抑制转录因子c-Maf的表达,从而减弱Th2细胞反应 | Rodriguez等[ |
miR-223 | 小鼠 | 粒细胞 | 抑制免疫反应 | 阻止粒细胞的过度分化 | Johnnidis等[ | |
miR-96 | 小鼠 | 肝细胞 | 抑制肝纤维化 | 诱导转化生长因子β1的表达;与miR-21不同位点结合靶向Smad7基因的3′UTR(尾随序列) | Luo等[ |
1 |
O'DONNELL K A , WENTZEL E A , ZELLER K I , et al. c-Myc-regulated microRNAs modulate E2F1 expression[J]. Nature, 2005, 435 (7043): 839- 843.
doi: 10.1038/nature03677 |
2 |
LEE R C , FEINBAUM R L , AMBROS V . The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75 (5): 843- 854.
doi: 10.1016/0092-8674(93)90529-Y |
3 |
PASQUINELLI A E , REINHART B J , SLACK F , et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA[J]. Nature, 2000, 408 (6808): 86- 89.
doi: 10.1038/35040556 |
4 |
MANI V , ASSEFA A D , HAHN B S . Transcriptome analysis and miRNA target profiling at various stages of root-knot nematode Meloidogyne incognita development for identification of potential regulatory networks[J]. Int J Mol Sci, 2021, 22 (14): 7442.
doi: 10.3390/ijms22147442 |
5 | 刘可, 黄海斌, 杨桂连. miRNA在寄生虫宿主免疫调控中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36 (4): 405- 408. |
LIU K , HUANG H B , YANG G L . miRNA functions in parasite-related immune regulation in hosts[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2018, 36 (4): 405- 408. | |
6 |
BAEK D , VILLÉN J , SHIN C , et al. The impact of microRNAs on protein output[J]. Nature, 2008, 455 (7209): 64- 71.
doi: 10.1038/nature07242 |
7 |
XIE Z X , ALLEN E , FAHLGREN N , et al. Expression of Arabidopsis MIRNA genes[J]. Plant Physiol, 2005, 138 (4): 2145- 2154.
doi: 10.1104/pp.105.062943 |
8 |
JONES-RHOADES M W , BARTEL D P . Computational identification of plant microRNAs and their targets, including a stress-induced miRNA[J]. Mol Cell, 2004, 14 (6): 787- 799.
doi: 10.1016/j.molcel.2004.05.027 |
9 |
FALLER M , GUO F . MicroRNA biogenesis: there's more than one way to skin a cat[J]. Biochim Biophys Acta, 2008, 1779 (11): 663- 667.
doi: 10.1016/j.bbagrm.2008.08.005 |
10 |
WANG Z X , XUE X Y , SUN J , et al. An "in-depth" description of the small non-coding RNA population of Schistosoma japonicum schistosomulum[J]. PLoS Negl Trop Dis, 2010, 4 (2): e596.
doi: 10.1371/journal.pntd.0000596 |
11 |
RUBY J G , JAN C H , BARTEL D P . Intronic microRNA precursors that bypass Drosha processing[J]. Nature, 2007, 448 (7149): 83- 86.
doi: 10.1038/nature05983 |
12 | 郝大海, 龚明. miRNA作用机制研究进展[J]. 基因组学与应用生物学, 2020, 39 (8): 3647- 3657. |
HAO D H , GONG M . The progress of miRNA action mechanism[J]. Genomics and Applied Biology, 2020, 39 (8): 3647- 3657. | |
13 |
SONG X W , LI Y , CAO X F , et al. MicroRNAs and their regulatory roles in plant-environment interactions[J]. Annu Rev Plant Biol, 2019, 70, 489- 525.
doi: 10.1146/annurev-arplant-050718-100334 |
14 |
CHEKULAEVA M , FILIPOWICZ W . Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells[J]. Curr Opin Cell Biol, 2009, 21 (3): 452- 460.
doi: 10.1016/j.ceb.2009.04.009 |
15 | CAI M , KOLLURU G K , AHMED A . Small molecule, big prospects: MicroRNA in pregnancy and its complications[J]. J Pregnancy, 2017, 2017, 6972732. |
16 | 魏秀秀, 吴志豪, 黄强. miRNA在寄生虫与宿主协同进化中的作用[J]. 中国动物传染病学报, 2024, 32 (3): 193- 199. |
WEI X X , WU Z H , HUANG Q . The role of miRNA during parasite and host co-evolution[J]. Chinese Journal of Animal Infectious Diseases, 2024, 32 (3): 193- 199. | |
17 |
VAN DER POL E , BÖING A N , HARRISON P , et al. Classification, functions, and clinical relevance of extracellular vesicles[J]. Pharmacol Rev, 2012, 64 (3): 676- 705.
doi: 10.1124/pr.112.005983 |
18 |
KELLER S , SANDERSON M P , STOECK A , et al. Exosomes: from biogenesis and secretion to biological function[J]. Immunol Lett, 2006, 107 (2): 102- 108.
doi: 10.1016/j.imlet.2006.09.005 |
19 |
VALADI H , EKSTRÖM K , BOSSIOS A , et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol, 2007, 9 (6): 654- 659.
doi: 10.1038/ncb1596 |
20 | 倪爱心, 麻慧, 陈继兰. 寄生虫来源的外泌体研究进展[J]. 畜牧兽医学报, 2019, 50 (5): 909- 917. |
NI A X , MA H , CHEN J L . Research progress of parasite-derived Exosomes[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50 (5): 909- 917. | |
21 |
RASHIDI S , MANSOURI R , ALI-HASSANZADEH M , et al. miRNAs in the regulation of mTOR signaling and host immune responses: the case of Leishmania infections[J]. Acta Trop, 2022, 231, 106431.
doi: 10.1016/j.actatropica.2022.106431 |
22 | 黄琳, 叶昌林, 生燕, 等. 外泌体miRNA在寄生虫中的进展[J]. 中国病原生物学杂志, 2019, 14 (9): 1115- 1118. |
HUANG L , YE C L , SHENG Y , et al. Advances in research on parasite exosomal miRNA[J]. Journal of Pathogen Biology, 2019, 14 (9): 1115- 1118. | |
23 |
ROJAS-PIRELA M , ANDRADE-ALVIÁREZ D , MEDINA L , et al. MicroRNAs: master regulators in host-parasitic protist interactions[J]. Open Biol, 2022, 12 (6): 210395.
doi: 10.1098/rsob.210395 |
24 | BAYER-SANTOS E , MARINI M M , DA SILVEIRA J F . Non-coding RNAs in host-pathogen interactions: subversion of mammalian cell functions by protozoan parasites[J]. Front Microbiol, 2017, 8, 474. |
25 |
CRATER A K , MANNI E , ANANVORANICH S . Utilization of inherent miRNAs in functional analyses of Toxoplasma gondii genes[J]. J Microbiol Methods, 2015, 108, 92- 102.
doi: 10.1016/j.mimet.2014.11.014 |
26 |
PÉREZ M G , SPILIOTIS M , REGO N , et al. Deciphering the role of miR-71 in Echinococcus multilocularis early development in vitro[J]. PLoS Negl Trop Dis, 2019, 13 (12): e0007932.
doi: 10.1371/journal.pntd.0007932 |
27 | 郭宝平. 多房棘球绦虫致病差异与线粒体遗传标志相关性的研究[D]. 石河子: 石河子大学, 2019. |
GUO B P. Study on correlation between pathogenic differences and mitochondrial genetic markers in Echinococcus multilocularis[D]. Shihezi: Shihezi University, 2019. (in Chinese) | |
28 |
MONTEIRO C J , MOTA S L A , DINIZ L D F , et al. Mir-190b negatively contributes to the Trypanosoma cruzi-infected cell survival by repressing PTEN protein expression[J]. Mem Inst Oswaldo Cruz, 2015, 110 (8): 996- 1002.
doi: 10.1590/0074-02760150184 |
29 |
PROTASIO A V , VAN DONGEN S , COLLINS J , et al. Correction: MiR-277/4989 regulate transcriptional landscape during juvenile to adult transition in the parasitic helminth Schistosoma mansoni[J]. PLoS Negl Trop Dis, 2022, 16 (6): e0010521.
doi: 10.1371/journal.pntd.0010521 |
30 |
HU C , ZHU S L , WANG J , et al. Schistosoma japonicum MiRNA-7-5p inhibits the growth and migration of hepatoma cells via cross-species regulation of S-phase kinase-associated protein 2[J]. Front Oncol, 2019, 9, 175.
doi: 10.3389/fonc.2019.00175 |
31 |
LIN Y , ZHU S L , HU C , et al. Cross-species suppression of hepatoma cell growth and migration by a Schistosoma japonicum MicroRNA[J]. Mol Ther Nucleic Acids, 2019, 18, 400- 412.
doi: 10.1016/j.omtn.2019.09.006 |
32 |
MUXEL S M , ACUÑA S M , AOKI J I , et al. Toll-like receptor and miRNA-let-7e expression alter the inflammatory response in Leishmania amazonensis-infected macrophages[J]. Front Immunol, 2018, 9, 2792.
doi: 10.3389/fimmu.2018.02792 |
33 |
DIOTALLEVI A , DE SANTI M , BUFFI G , et al. Leishmania infection induces MicroRNA hsa-miR-346 in human cell line-derived macrophages[J]. Front Microbiol, 2018, 9, 1019.
doi: 10.3389/fmicb.2018.01019 |
34 |
MUXEL S M , LARANJEIRA-SILVA M F , ZAMPIERI R A , et al. Leishmania (Leishmania) amazonensis induces macrophage miR-294 and miR-721 expression and modulates infection by targeting NOS2 and L-arginine metabolism[J]. Sci Rep, 2017, 7, 44141.
doi: 10.1038/srep44141 |
35 | TIWARI N , KUMAR V , GEDDA M R , et al. Corrigendum: identification and characterization of miRNAs in response to Leishmania donovani infection: delineation of their roles in macrophage dysfunction[J]. Front Microbiol, 2017, 8, 1190. |
36 |
FERNANDES J C R , AOKI J I , MAIA ACUÑA S , et al. Melatonin and Leishmania amazonensis infection altered miR-294, miR-30e, and miR-302d Impacting on Tnf, Mcp-1, and Nos2 expression[J]. Front Cell Infect Microbiol, 2019, 9, 60.
doi: 10.3389/fcimb.2019.00060 |
37 |
MARTIN-ALONSO A , COHEN A , QUISPE-RICALDE M A , et al. Differentially expressed microRNAs in experimental cerebral malaria and their involvement in endocytosis, adherens junctions, FoxO and TGF-β signalling pathways[J]. Sci Rep, 2018, 8 (1): 11277.
doi: 10.1038/s41598-018-29721-y |
38 |
LI J J , HUANG M J , LI Z , et al. Identification of potential whole blood MicroRNA biomarkers for the blood stage of adult imported falciparum malaria through integrated mRNA and miRNA expression profiling[J]. Biochem Biophys Res Commun, 2018, 506 (3): 471- 477.
doi: 10.1016/j.bbrc.2018.10.072 |
39 |
PRABHU S R , WARE A P , SAADI A V . Erythrocyte miRNA regulators and malarial pathophysiology[J]. Infect Genet Evol, 2021, 93, 105000.
doi: 10.1016/j.meegid.2021.105000 |
40 | WILDE M L , TRIGLIA T , MARAPANA D , et al. Protein kinase A is essential for invasion of Plasmodium falciparum into human erythrocytes[J]. mBio, 2019, 10 (5): e01972- 19. |
41 |
GUESDON W , AURAY G , PEZIER T , et al. CCL20 displays antimicrobial activity against Cryptosporidium parvum, but its expression is reduced during infection in the intestine of neonatal mice[J]. J Infect Dis, 2015, 212 (8): 1332- 1340.
doi: 10.1093/infdis/jiv206 |
42 |
HU G K , ZHOU R , LIU J , et al. MicroRNA-98 and let-7 regulate expression of suppressor of cytokine signaling 4 in biliary epithelial cells in response to Cryptosporidium parvum infection[J]. J Infect Dis, 2010, 202 (1): 125- 135.
doi: 10.1086/653212 |
43 |
RODRIGUEZ A , VIGORITO E , CLARE S , et al. Requirement of bic/microRNA-155 for normal immune function[J]. Science, 2007, 316 (5824): 608- 611.
doi: 10.1126/science.1139253 |
44 |
JOHNNIDIS J B , HARRIS M H , WHEELER R T , et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223[J]. Nature, 2008, 451 (7182): 1125- 1129.
doi: 10.1038/nature06607 |
45 |
LUO X F , ZHANG D M , XIE J , et al. MicroRNA-96 promotes schistosomiasis hepatic fibrosis in mice by suppressing Smad7[J]. Mol Ther Methods Clin Dev, 2018, 11, 73- 82.
doi: 10.1016/j.omtm.2018.10.002 |
46 |
FERGUSON D J P . Toxoplasma gondii: 1908-2008, homage to Nicolle, Manceaux and Splendore[J]. Mem Inst Oswaldo Cruz, 2009, 104 (2): 133- 148.
doi: 10.1590/S0074-02762009000200003 |
47 |
XIAO J , LI Y , PRANDOVSZKY E , et al. MicroRNA-132 dysregulation in Toxoplasma gondii infection has implications for dopamine signaling pathway[J]. Neuroscience, 2014, 268, 128- 138.
doi: 10.1016/j.neuroscience.2014.03.015 |
48 |
DUBEY J P , LINDSAY D S , SPEER C A . Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts[J]. Clin Microbiol Rev, 1998, 11 (2): 267- 299.
doi: 10.1128/CMR.11.2.267 |
49 |
CANNELLA D , BRENIER-PINCHART M P , BRAUN L , et al. miR-146a and miR-155 delineate a MicroRNA fingerprint associated with Toxoplasma persistence in the host brain[J]. Cell Rep, 2014, 6 (5): 928- 937.
doi: 10.1016/j.celrep.2014.02.002 |
50 |
LAO K Q , XU N L , YEUNG V , et al. Multiplexing RT-PCR for the detection of multiple miRNA species in small samples[J]. Biochem Biophys Res Commun, 2006, 343 (1): 85- 89.
doi: 10.1016/j.bbrc.2006.02.106 |
51 |
SILVA V O , MAIA M M , TORRECILHAS A C , et al. Extracellular vesicles isolated from Toxoplasma gondii induce host immune response[J]. Parasite Immunol, 2018, 40 (9): e12571.
doi: 10.1111/pim.12571 |
52 |
温福利, 郑和平, 党源, 等. 弓形虫生物检测靶标miR-191的鉴定[J]. 实验动物与比较医学, 2018, 38 (5): 350- 355.
doi: 10.3969/j.issn.1674-5817.2018.05.005 |
WEN F L , ZHENG H P , DANG Y , et al. Identification of the target miR-191 for the biological detection of Toxoplasma gondii[J]. Laboratory Animal and Comparative Medicine, 2018, 38 (5): 350- 355.
doi: 10.3969/j.issn.1674-5817.2018.05.005 |
|
53 |
GRUSZKA R , ZAKRZEWSKA M . The oncogenic relevance of miR-17-92 cluster and its paralogous miR-106b-25 and miR-106a-363 clusters in brain tumors[J]. Int J Mol Sci, 2018, 19 (3): 879.
doi: 10.3390/ijms19030879 |
54 |
FRANCO M , SHASTRI A J , BOOTHROYD J C . Infection by Toxoplasma gondii specifically induces host c-Myc and the genes this pivotal transcription factor regulates[J]. Eukaryot Cell, 2014, 13 (4): 483- 493.
doi: 10.1128/EC.00316-13 |
55 |
CAI Y , CHEN H , MO X , et al. Toxoplasma gondii inhibits apoptosis via a novel STAT3-miR-17-92-Bim pathway in macrophages[J]. Cell Signal, 2014, 26 (6): 1204- 1212.
doi: 10.1016/j.cellsig.2014.02.013 |
56 | WHO. Control and surveillance of African trypanosomiasis: report of a WHO expert committee[R]. Geneva: WHO, 1998. |
57 | PONTE-SUCRE A . An overview of Trypanosoma brucei infections: an intense host-parasite interaction[J]. Front Microbiol, 2016, 7, 2126. |
58 |
CHUENKOVA M V , FURNARI F B , CAVENEE W K , et al. Trypanosoma cruzi trans-sialidase: a potent and specific survival factor for human Schwann cells by means of phosphatidylinositol 3-kinase/Akt signaling[J]. Proc Natl Acad Sci U S A, 2001, 98 (17): 9936- 9941.
doi: 10.1073/pnas.161298398 |
59 |
AOKI M P , GUIÑAZÚ N L , PELLEGRINI A V , et al. Cruzipain, a major Trypanosoma cruzi antigen, promotes arginase-2 expression and survival of neonatal mouse cardiomyocytes[J]. Am J Physiol Cell Physiol, 2004, 286 (2): C206- C212.
doi: 10.1152/ajpcell.00282.2003 |
60 |
MAEHAMA T , DIXON J E . The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3, 4, 5-trisphosphate[J]. J Biol Chem, 1998, 273 (22): 13375- 13378.
doi: 10.1074/jbc.273.22.13375 |
61 | OUDIT G Y , PENNINGER J M . Cardiac regulation by phosphoinositide 3-kinases and PTEN[J]. Cardiovasc Res, 2009, 82 (2): 250- 260. |
62 |
BAYER-SANTOS E , LIMA F M , RUIZ J C , et al. Characterization of the small RNA content of Trypanosoma cruzi extracellular vesicles[J]. Mol Biochem Parasitol, 2014, 193 (2): 71- 74.
doi: 10.1016/j.molbiopara.2014.02.004 |
63 |
JACKSON A P , SANDERS M , BERRY A , et al. The genome sequence of Trypanosoma brucei gambiense, causative agent of chronic human african trypanosomiasis[J]. PLoS Negl Trop Dis, 2010, 4 (4): e658.
doi: 10.1371/journal.pntd.0000658 |
64 |
YU J , YU Y , LI Q , et al. Comprehensive analysis of miRNA profiles reveals the role of Schistosoma japonicum miRNAs at different developmental stages[J]. Vet Res, 2019, 50 (1): 23.
doi: 10.1186/s13567-019-0642-2 |
65 | 杨瑞冰, 李云珍, 苏坤华, 等. 细胞外囊泡介导的血吸虫-宿主相互作用研究进展[J]. 中国血吸虫病防治杂志, 2022, 34 (3): 318- 321. |
YANG R B , LI Y Z , SU K H , et al. Advances in studies on schistosome-host interactions mediated by extracellular vesicles[J]. Chinese Journal of Schistosomiasis Control, 2022, 34 (3): 318- 321. | |
66 |
LU Z G , SESSLER F , HOLROYD N , et al. Schistosome sex matters: a deep view into gonad-specific and pairing-dependent transcriptomes reveals a complex gender interplay[J]. Sci Rep, 2016, 6, 31150.
doi: 10.1038/srep31150 |
67 |
GUPTA B C , BASCH P F . The role of Schistosoma mansoni males in feeding and development of female worms[J]. J Parasitol, 1987, 73 (3): 481- 486.
doi: 10.2307/3282125 |
68 |
SUN J , WANG S W , LI C , et al. Novel expression profiles of microRNAs suggest that specific miRNAs regulate gene expression for the sexual maturation of female Schistosoma japonicum after pairing[J]. Parasit Vectors, 2014, 7, 177.
doi: 10.1186/1756-3305-7-177 |
69 |
ZHU S L , WANG S , LIN Y , et al. Release of extracellular vesicles containing small RNAs from the eggs of Schistosoma japonicum[J]. Parasit Vectors, 2016, 9 (1): 574.
doi: 10.1186/s13071-016-1845-2 |
70 |
DING J T , HE G T , WU J E , et al. miRNA-seq of Echinococcus multilocularis extracellular vesicles and immunomodulatory effects of miR-4989[J]. Front Microbiol, 2019, 10, 2707.
doi: 10.3389/fmicb.2019.02707 |
71 |
BUCK A H , COAKLEY G , SIMBARI F , et al. Erratum: exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity[J]. Nat Commun, 2015, 6, 8772.
doi: 10.1038/ncomms9772 |
72 |
QUINTANA J F , MAKEPEACE B L , BABAYAN S A , et al. Extracellular Onchocerca-derived small RNAs in host nodules and blood[J]. Parasit Vectors, 2015, 8, 58.
doi: 10.1186/s13071-015-0656-1 |
73 |
JAFARZADEH A , NEMATI M , AMINIZADEH N , et al. Bidirectional cytokine-microRNA control: a novel immunoregulatory framework in leishmaniasis[J]. PLoS Pathog, 2022, 18 (8): e1010696.
doi: 10.1371/journal.ppat.1010696 |
74 |
KATARIA P , SURELA N , CHAUDHARY A , et al. MiRNA: biological regulator in host-parasite interaction during malaria infection[J]. Int J Environ Res Public Health, 2022, 19 (4): 2395.
doi: 10.3390/ijerph19042395 |
75 |
DANDEWAD V , VINDU A , JOSEPH J , et al. Import of human miRNA-RISC complex into Plasmodium falciparum and regulation of the parasite gene expression[J]. J Biosci, 2019, 44 (2): 50.
doi: 10.1007/s12038-019-9870-x |
76 | WANG Z S , XI J M , HAO X , et al. Red blood cells release microparticles containing human argonaute 2 and miRNAs to target genes of Plasmodium falciparum[J]. Emerg Microbes Infect, 2017, 6 (8): e75. |
77 | BARKER K R , LU Z Y , KIM H , et al. miR-155 modifies inflammation, endothelial activation and blood-brain barrier dysfunction in cerebral malaria[J]. Mol Med, 2017, 23, 24- 33. |
78 |
EL-ASSAAD F , HEMPEL C , COMBES V , et al. Differential microRNA expression in experimental cerebral and noncerebral malaria[J]. Infect Immun, 2011, 79 (6): 2379- 2384.
doi: 10.1128/IAI.01136-10 |
79 |
MORISHITA A , OURA K , TADOKORO T , et al. MicroRNA interference in hepatic host-pathogen interactions[J]. Int J Mol Sci, 2021, 22 (7): 3554.
doi: 10.3390/ijms22073554 |
80 |
CAI P F , PIAO X Y , LIU S , et al. MicroRNA-gene expression network in murine liver during Schistosoma japonicum infection[J]. PLoS One, 2013, 8 (6): e67037.
doi: 10.1371/journal.pone.0067037 |
81 |
HAKIMI M A , CANNELLA D . Apicomplexan parasites and subversion of the host cell microRNA pathway[J]. Trends Parasitol, 2011, 27 (11): 481- 486.
doi: 10.1016/j.pt.2011.07.001 |
82 |
ZEINER G M , NORMAN K L , THOMSON J M , et al. Toxoplasma gondii infection specifically increases the levels of key host microRNAs[J]. PLoS One, 2010, 5 (1): e8742.
doi: 10.1371/journal.pone.0008742 |
83 |
ZOU Y , MENG J X , WEI X Y , et al. CircRNA and miRNA expression analysis in livers of mice with Toxoplasma gondii infection[J]. Front Cell Infect Microbiol, 2022, 12, 1037586.
doi: 10.3389/fcimb.2022.1037586 |
84 |
ZHOU C X , AI K , HUANG C Q , et al. miRNA and circRNA expression patterns in mouse brain during toxoplasmosis development[J]. BMC Genomics, 2020, 21 (1): 46.
doi: 10.1186/s12864-020-6464-9 |
85 |
POPE S M , LÄSSER C . Toxoplasma gondii infection of fibroblasts causes the production of exosome-like vesicles containing a unique array of mRNA and miRNA transcripts compared to serum starvation[J]. J Extracell Vesicles, 2013, 2 (1): 22484.
doi: 10.3402/jev.v2i0.22484 |
86 |
DIAZ J H , WARREN R J , OSTER M J . The disease ecology, epidemiology, clinical manifestations, and management of trichinellosis linked to consumption of wild animal meat[J]. Wilderness Environ Med, 2020, 31 (2): 235- 244.
doi: 10.1016/j.wem.2019.12.003 |
87 |
LIU X L , SONG Y X , LU H J , et al. Transcriptome of small regulatory RNAs in the development of the zoonotic parasite Trichinella spiralis[J]. PLoS One, 2011, 6 (11): e26448.
doi: 10.1371/journal.pone.0026448 |
88 | 马小涵. 旋毛虫感染宿主血清中差异miRNA的功能及诊断价值研究[D]. 郑州: 郑州大学, 2020. |
MA X H. Research on the functions and diagnostic values of altered miRNA in the serum of hosts infected with Trichinella spiralis[D]. Zhengzhou: Zhengzhou University, 2020. (in Chinese) | |
89 |
YANG S F , ABDULLA R , LU C , et al. Inhibition of microRNA-376b protects against renal interstitial fibrosis via inducing macrophage autophagy by upregulating Atg5 in mice with chronic kidney disease[J]. Kidney Blood Press Res, 2018, 43 (6): 1749- 1764.
doi: 10.1159/000495394 |
90 | XING Q W , XIE H Y , ZHU B Y , et al. MiR-455-5p suppresses the progression of prostate cancer by targeting CCR5[J]. BioMed Res Int, 2019, 2019, 6394784. |
[1] | Jingyu LI, Jinming CHEN, Mingyi ZHANG, Shanshan ZHAO, Deliang TAO, Junke SONG, Xin YANG, Yingying FAN, Guanghui ZHAO. Identification and Analysis of miRNAs of Neospora caninum [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3085-3093. |
[2] | Xiaoxu WANG, Yanqing CHEN, Jiaqi ZHANG, Ye WANG, Rui WANG, Hanlin YU, Kaiqi YANG, Jun BAO, Runxiang ZHANG. Effect of Foot Pad Dermatitis on Production Performance, Egg Quality, Behavioral Responses, and Immune Levels of Laying Hens in Furnished Cages [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2680-2691. |
[3] | CHEN Xin, QIN Tong. mRNA Vaccine and Its Research Prospect in Zoonotic Diseases [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2732-2742. |
[4] | LONG Qinqin, WEI Min, WANG Yuting, WEN Ming, PANG Feng. The Battle between Orf Virus and Host: Immune Response and Viral Immune Evasion Mechanisms [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1845-1853. |
[5] | WU Chunlin, ZHONG Lemiao, ZHAO Yan, LI Wenji, HUANG Xiaozi, WU Yijian. Transcriptomic Analysis on Responses of Chicken Trachea to Mycoplasma gallisepticum Strain MG-HY Infection [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2652-2662. |
[6] | ZHAO Xuyang, JIN Jiaxin, LU Wenlong, ZHANG Shuai, HUANG Li, ZHANG Gaiping, SUN Aijun, ZHUANG Guoqing. Advances in the Molecular Mechanism of Immune Escape of African Swine Fever Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2074-2082. |
[7] | ZHANG Na, WANG Fei, GE Ximin, ZHAO Guiping, WEN Jie, LI Qinghe. Correlation between the Expression Level of USP7 and the Immune Response to Salmonella Infection in Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2396-2402. |
[8] | WANG Luyao, HAO Xuepiao, LEI Baishi, ZHAO Kuan, ZHANG Wuchao, YUAN Wanzhe. Differential Expression of Transcriptome in Liver, Thymus and Ileum of Ducks Infected with Novel Goose Parvovirus [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2): 654-657. |
[9] | YIN Lei, PAN Xiaocheng, SHEN Xuehuai, ZHANG Danjun, DAI Yin, WANG Jieru. Analysis of Bone Marrow miRNA Expression Profiles in Salmonella enteric Serovar Pullorum-infected Chicks [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12): 4527-4534. |
[10] | ZHU Jingjing, DAI Zhenglie, WANG Han, LI Xiangchen, ZHAO Ayong, ZHOU Xiaolong, YANG Songbai. Analysis of Differential Expression Profile of LncRNA in PK15 Cells Infected with Japanese Encephalitis Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(1): 272-281. |
[11] | ZHANG Fanfan, ZENG Yanbing, FANG Shaopei, LI Haiqin, KANG Zhaofeng, TAN Meifang, TAN Jia, YANG Qun, WEI Qipeng. Research Progress in Duck Tembusu Virus Disease [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(6): 1489-1497. |
[12] | ZHANG Ke, YAN Jimeng, LIU Yaowen, LI Honghui, CHEN Qiang, LI Zhuo, SU Yanhua, PU Shaoxia, WANG Haizhen, WEI Hongjiang, JIA Baoyu, CHENG Wenmin. miRNAs Expression Profile of Porcine GV/MⅡ-Stage Oocytes and Screening of miRNAs Related to Npm2 Gene [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(4): 996-1009. |
[13] | WANG Shubo, XU Yigang, CHEN Qiuyan, MEI Zhuyuan, CUI Wen, JIANG Yanping, ZHOU Han, WANG Li, QIAO Xinyuan, LI Yijing, TANG Lijie. Analysis of Immune Response Induced by Recombinant Lactobacillus reuteri Expressing Cap Protein of Porcine Circovirus Type 2 in Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(9): 2238-2249. |
[14] | WANG Shuli, ZHANG Huiru, BI Yanqi, WANG Dejuan, CHEN Lin, ZHANG Xiaoting, LI Zhiqiang. Analysis of Immune Responses Induced by Brucella Transcriptional Regulatory Factor HFQ [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(8): 1977-1984. |
[15] | ZHANG Lihuan, MA Yueyue, LIU Wenyan, LAN Wutao, ZHU Zhiwei. microRNA-96-5p Targets MITF Gene in Alpaca Melanocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(6): 1229-1237. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||