[1] |
KUMAR Y, SINGH V, KUMAR G, et al. Serovar diversity of Salmonella among poultry[J]. Indian J Med Res, 2019, 150(1):92-95.
|
[2] |
THRELFALL E J. Antimicrobial drug resistance in Salmonella:problems and perspectives in food-and water-borne infections[J]. FEMS Microbiol Rev, 2002, 26(2):141-148.
|
[3] |
SNOW L C, DAVIES R H, CHRISTIANSEN K H, et al. Survey of the prevalence of Salmonella species on commercial laying farms in the United Kingdom[J]. Vet Rec, 2007, 161(14):471-476.
|
[4] |
EGOROVA S A, KAFTYREVA L A, POMAZANOV V V. Current trends in the development of resistance to clinically significant antibiotics in Salmonella (review of literature)[J]. Klin Lab Diagn, 2020, 65(5):308-315.
|
[5] |
王菲. SPOP通过降解MyD88负反馈调节先天免疫的分子机制[D].北京:中国农业科学院, 2020.WANG F. SPOP promotes degradation of MyD88 to suppress the innate immune response[D]. Beijing:Chinese Academy of Agricultural Sciences, 2020.(in Chinese)
|
[6] |
LI P, XIA P N, WEN J, et al. Up-regulation of the MyD88-dependent pathway of TLR signaling in spleen and caecum of young chickens infected with Salmonella serovar Pullorum[J]. Vet Microbiol, 2010, 143(2-4):346-351.
|
[7] |
HUANG X Y, ANSARI A R, HUANG H B, et al. Lipopolysaccharide mediates immuno-pathological alterations in young chicken liver through TLR4 signaling[J]. BMC Immunol, 2017, 18(1):12.
|
[8] |
LI N Y, ANSARI A R, SUN Z J, et al. Toll like receptor 4 signaling pathway participated in Salmonella lipopolysaccharide-induced spleen injury in young chicks[J]. Microb Pathog, 2017, 112:288-294.
|
[9] |
VALLES G J, BEZSONOVA I, WOODGATE R, et al. USP7 is a master regulator of genome stability[J]. Front Cell Dev Biol, 2020, 8:717.
|
[10] |
CHAUHAN D, TIAN Z, NICHOLSON B, et al. A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance[J]. Cancer Cell, 2012, 22(3):345-358.
|
[11] |
WANG M, ZHANG Y, WANG T, et al. The USP7 inhibitor P5091 induces cell death in ovarian cancers with different P53 status[J]. Cell Physiol Biochem, 2017, 43(5):1755-1766.
|
[12] |
MALAPELLE U, MORRA F, ILARDI G, et al. USP7 inhibitors, downregulating CCDC6, sensitize lung neuroendocrine cancer cells to PARP-inhibitor drugs[J]. Lung Cancer, 2017, 107:41-49.
|
[13] |
LU Y Z, SU F H, LI Q L, et al. Pattern recognition receptors in Drosophila immune responses[J]. Dev Comp Immunol, 2020, 102:103468.
|
[14] |
LI Q H, WANG F, WANG Q, et al. SPOP promotes ubiquitination and degradation of MyD88 to suppress the innate immune response[J]. PLoS Pathog, 2020, 16(5):e1008188.
|
[15] |
BERNAL-BAYARD J, RAMOS-MORALES F. Molecular mechanisms used by Salmonella to evade the immune system[J]. Curr Issues Mol Biol, 2018, 25:133-168.
|
[16] |
FITZGERALD K A, CHEN Z J. Sorting out toll signals[J]. Cell, 2006, 125(5):834-836.
|
[17] |
LÓPEZ-BOJÓRQUEZ L N, DEHESA A Z, REYES-TERÁN G. Molecular mechanisms involved in the pathogenesis of septic shock[J]. Arch Med Res, 2004, 35(6):465-479.
|
[18] |
HAWIGER J, VEACH R A, ZIENKIEWICZ J. New paradigms in sepsis:from prevention to protection of failing microcirculation[J]. J Thromb Haemost, 2015, 13(10):1743-1756.
|
[19] |
AMAYA-URIBE L, ROJAS M, AZIZI G, et al. Primary immunodeficiency and autoimmunity:a comprehensive review[J]. J Autoimmun, 2019, 99:52-72.
|
[20] |
LAWRENCE T. The nuclear factor NF-κB pathway in inflammation[J]. Cold Spring Harb Perspect Biol, 2009, 1(6):a001651.
|
[21] |
MITCHELL J P, CARMODY R J. NF-κB and the transcriptional control of inflammation[J]. Int Rev Cell Mol Biol, 2018, 335:41-84.
|
[22] |
LAWRENCE T, GILROY D W, COLVILLE-NASH P R, et al. Possible new role for NF-κB in the resolution of inflammation[J]. Nat Med, 2001, 7(12):1291-1297.
|
[23] |
FAESEN A C, DIRAC A M G, SHANMUGHAM A, et al. Mechanism of USP7/HAUSP activation by its C-terminal ubiquitin-like domain and allosteric regulation by GMP-synthetase[J]. Mol Cell, 2011, 44(1):147-159.
|
[24] |
VAN DER HORST A, DE VRIES-SMITS A M M, BRENKMAN A B, et al. FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP[J]. Nat Cell Biol, 2006, 8(10):1064-1073.
|
[25] |
NICHOLSON B, MARBLESTONE J G, BUTT T R, et al. Deubiquitinating enzymes as novel anticancer targets[J]. Future Oncol, 2007, 3(2):191-199.
|
[26] |
PAN T Z, LI X T, LI Y Y, et al. USP7 inhibition induces apoptosis in Glioblastoma by enhancing ubiquitination of ARF4[J]. Cancer Cell Int, 2021, 21(1):508.
|
[27] |
MITXITORENA I, SOMMA D, MITCHELL J P, et al. The deubiquitinase USP7 uses a distinct ubiquitin-like domain to deubiquitinate NF-κB subunits[J]. J Biol Chem, 2020, 295(33):11754-11763.
|
[28] |
战飞翔,常静,马立新,等.去泛素化酶7与髓样分化因子88蛋白相互作用的研究[J].湖北大学学报:自然科学版, 2013, 35(1):17-19, 28.ZHAN F X, CHANG J, MA L X, et al. Study on the interaction between ubiquitin-specific-processing protease 7 and myeloid differentiation primary response gene[J]. Journal of Hubei University:Natural Science, 2013, 35(1):17-19, 28.(in Chinese)
|
[29] |
HAYDEN M S, GHOSH S. NF-κB in immunobiology[J]. Cell Res, 2011, 21(2):223-244.
|
[30] |
LI X C, ZHANG P, JIANG X S, et al. Differences in expression of genes in the MyD88 and TRIF signalling pathways and methylation of TLR4 and TRIF in Tibetan chickens and DaHeng S03 chickens infected with Salmonella enterica serovar enteritidis[J]. Vet Immunol Immunopathol, 2017, 189:28-35.
|