Acta Veterinaria et Zootechnica Sinica ›› 2023, Vol. 54 ›› Issue (7): 2732-2742.doi: 10.11843/j.issn.0366-6964.2023.07.007
• REVIEW • Previous Articles Next Articles
CHEN Xin, QIN Tong*
Received:
2022-11-18
Online:
2023-07-23
Published:
2023-07-21
CLC Number:
CHEN Xin, QIN Tong. mRNA Vaccine and Its Research Prospect in Zoonotic Diseases[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2732-2742.
[1] | WOLFF J, MALONE R, WILLIAMS P, et al. Direct gene transfer into mouse muscle in vivo[J]. Science, 1990, 247(4949):1465-1468. |
[2] | KWON S, KWON M, IM S, et al. mRNA vaccines:the most recent clinical applications of synthetic mRNA[J]. Arch Pharm Res, 2022, 45(4):245-262. |
[3] | KARIKÓ K, BUCKSTEIN M, NI H, et al. Suppression of RNA recognition by Toll-like receptors:the impact of nucleoside modification and the evolutionary origin of RNA[J]. Immunity, 2005, 23(2):165-175. |
[4] | KARIKÓ K, MURAMATSU H, WELSH F A, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability[J]. Mol Ther, 2008, 16(11):1833-1840. |
[5] | KIM J, EYGERIS Y, GUPTA M, et al. Self-assembled mRNA vaccines[J]. Adv Drug Delivery Rev, 2021, 170:83-112. |
[6] | CHAUDHARY N, WEISSMAN D, WHITEHEAD K A. mRNA vaccines for infectious diseases:principles, delivery and clinical translation[J]. Nat Rev Drug Discov, 2021, 20(11):817-838. |
[7] | RAMANATHAN A, ROBB G B, CHAN S H. mRNA capping:biological functions and applications[J]. Nucleic Acids Res, 2016, 44(16):7511-7526. |
[8] | DAFFIS S, SZRETTER K J, SCHRIEWER J, et al. 2'-O methylation of the viral mRNA cap evades host restriction by IFIT family members[J]. Nature, 2010, 468(7322):452-456. |
[9] | QIN S G, TANG X S, CHEN Y T, et al. mRNA-based therapeutics:powerful and versatile tools to combat diseases[J]. Sig Transduct Target Ther, 2022, 7(1):166. |
[10] | HINNEBUSCH A G, IVANOV I P, SONENBERG N. Translational control by 5'-untranslated regions of eukaryotic mRNAs[J]. Science, 2016, 352(6292):1413-1416. |
[11] | ZOHRA F T, CHOWDHURY E H, TADA S, et al. Effective delivery with enhanced translational activity synergistically accelerates mRNA-based transfection[J]. Biochem Biophys Res Commun, 2007, 358(1):373-378. |
[12] | LADAK R J, HE A J, HUANG Y H, et al. The current landscape of mRNA vaccines against viruses and cancer-A mini review[J]. Front Immunol, 2022, 13:885371. |
[13] | MUTTACH F, MUTHMANN N, RENTMEISTER A. Synthetic mRNA capping[J]. Beilstein J Org Chem, 2017, 13:2819-2832. |
[14] | HENDERSON J M, UJITA A, HILL E, et al. Cap 1 messenger RNA synthesis with Co-transcriptional CleanCap® analog by in vitro transcription[J]. Curr Protoc, 2021, 1(2):e39. |
[15] | SHANMUGASUNDARAM M, SENTHILVELAN A, KORE A R. Recent advances in modified cap analogs:synthesis, biochemical properties, and mRNA based vaccines[J]. Chem Rec, 2022, 22(8):e202200005. |
[16] | CHATTERJEE S, PAL J K. Role of 5'- and 3'-untranslated regions of mRNAs in human diseases[J]. Biol Cell, 2009, 101(5):251-262. |
[17] | SCHROM E, HUBER M, ANEJA M, et al. Translation of angiotensin-converting enzyme 2 upon liver- and lung-targeted delivery of optimized chemically modified mRNA[J]. Mol Ther Nucleic Acids, 2017, 7:350-365. |
[18] | SVITKIN Y V, PAUSE A, HAGHIGHAT A, et al. The requirement for eukaryotic initiation factor 4A (eIF4A) in translation is in direct proportion to the degree of mRNA 5' secondary structure[J]. RNA, 2001, 7(3):382-394. |
[19] | BARREAU C, PAILLARD L, OSBORNE H B. AU-rich elements and associated factors:are there unifying principles?[J]. Nucleic Acids Res, 2005, 33(22):7138-7150. |
[20] | DE JONGH R P H, VAN DIJK A D J, JULSING M K, et al. Designing eukaryotic gene expression regulation using machine learning[J]. Trends Biotechnol, 2020, 38(2):191-201. |
[21] | THESS A, GRUND S, MUI B L, et al. Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals[J]. Mol Ther, 2015, 23(9):1456-1464. |
[22] | KUDLA G, LIPINSKI L, CAFFIN F, et al. High guanine and cytosine content increases mRNA levels in mammalian cells[J]. PLoS Biol, 2006, 4(6):e180. |
[23] | WAYMENT-STEELE H K, KIM D S, CHOE C A, et al. Theoretical basis for stabilizing messenger RNA through secondary structure design[J]. Nucleic Acids Res, 2021, 49(18):10604-10617. |
[24] | YU S, KIM V N. A tale of non-canonical tails:gene regulation by post-transcriptional RNA tailing[J]. Nat Rev Mol Cell Biol, 2020, 21(9):542-556. |
[25] | TANG T T L, PASSMORE L A. Recognition of poly(A) RNA through its intrinsic helical structure[J]. Cold Spring Harb Symp Quant Biol, 2019, 84:21-30. |
[26] | OH S, KESSLER J A. Design, assembly, production, and transfection of synthetic modified mRNA[J]. Methods, 2018, 133:29-43. |
[27] | ELANGO N, ELANGO S, SHIVSHANKAR P, et al. Optimized transfection of mRNA transcribed from a d(A/T)100 tail-containing vector[J]. Biochem Biophys Res Commun, 2005, 330(3):958-966. |
[28] | ECKMANN C R, RAMMELT C, WAHLE E. Control of poly(A) tail length[J]. Wiley Interdiscip Rev RNA, 2011, 2(3):348-361. |
[29] | LACZKÓ D, HOGAN M J, TOULMIN S A, et al. A single immunization with nucleoside-modified mRNA vaccines elicits strong cellular and humoral immune responses against SARS-CoV-2 in mice[J]. Immunity, 2020, 53(4):724-732. |
[30] | ABU BAKAR F, NG L F P. Nonstructural proteins of alphavirus-potential targets for drug development[J]. Viruses, 2018, 10(2):71. |
[31] | HAAKE C, COOK S, PUSTERLA N, et al. Coronavirus infections in companion animals:virology, epidemiology, clinical and pathologic features[J]. Viruses, 2020, 12(9):1023. |
[32] | COHEN J. First self-copying mRNA vaccine proves itself in pandemic trial[J]. Science, 2022, 376(6592):446. |
[33] | LI M Y, LI Y, LI S Q, et al. The nano delivery systems and applications of mRNA[J]. Eur J Med Chem, 2022, 227:113910. |
[34] | KNUDSON C J, ALVES-PEIXOTO P, MURAMATSU H, et al. Lipid-nanoparticle-encapsulated mRNA vaccines induce protective memory CD8 T cells against a lethal viral infection[J]. Mol Ther, 2021, 29(9):2769-2781. |
[35] | JARZEBSKA N T, LAUCHLI S, ISELIN C, et al. Functional differences between protamine preparations for the transfection of mRNA[J]. Drug Deliv, 2020, 27(1):1231-1235. |
[36] | COPPIN L, LECLERC J, VINCENT A, et al. Messenger RNA life-cycle in cancer cells:emerging role of conventional and non-conventional RNA-binding proteins?[J]. Int J Mol Sci, 2018, 19(3):650. |
[37] | LI B, ZHANG X F, DONG Y Z. Nanoscale platforms for messenger RNA delivery[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2019, 11(2):e1530. |
[38] | EYGERIS Y, PATEL S, JOZIC A, et al. Deconvoluting lipid nanoparticle structure for messenger RNA delivery[J]. Nano Lett, 2020, 20(6):4543-4549. |
[39] | ALAMEH M G, TOMBÁCZ I, BETTINI E, et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses[J]. Immunity, 2021, 54(12):2877-2892. e7. |
[40] | KOWALSKI P S, RUDRA A, MIAO L, et al. Delivering the messenger:advances in technologies for therapeutic mRNA delivery[J]. Mol Ther, 2019, 27(4):710-728. |
[41] | HOU X C, ZAKS T, LANGER R, et al. Lipid nanoparticles for mRNA delivery[J]. Nat Rev Mater, 2021, 6(12):1078-1094. |
[42] | BADEN L R, EL SAHLY H M, ESSINK B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine[J]. N Engl J Med, 2021, 384(5):403-416. |
[43] | CUI S H, WANG Y Y, GONG Y, et al. Correlation of the cytotoxic effects of cationic lipids with their headgroups[J]. Toxicol Res (Camb), 2018, 7(3):473-479. |
[44] | GUIMARAES P P G, ZHANG R, SPEKTOR R, et al. Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening[J]. J Control Release, 2019, 316:404-417. |
[45] | HORIUCHI Y, LAI S J, YAMAZAKI A, et al. Validation and application of a novel cholesterol efflux assay using immobilized liposomes as a substitute for cultured cells[J]. Biosci Rep, 2018, 38(2):BSR20180144. |
[46] | BASKARARAJ S, PANNEERSELVAM T, GOVINDARAJ S, et al. Formulation and characterization of folate receptor-targeted PEGylated liposome encapsulating bioactive compounds from Kappaphycus alvarezii for cancer therapy[J]. 3 Biotech, 2020, 10(3):136. |
[47] | ERASMUS J H, KHANDHAR A P, GUDERIAN J, et al. A nanostructured lipid carrier for delivery of a replicating viral RNA provides single, low-dose protection against Zika[J]. Mol Ther, 2018, 26(10):2507-2522. |
[48] | TO K K W, CHO W C S. An overview of rational design of mRNA-based therapeutics and vaccines[J]. Expert Opin Drug Discov, 2021, 16(11):1307-1317. |
[49] | ZHANG C L, MARUGGI G, SHAN H, et al. Advances in mRNA vaccines for infectious diseases[J]. Front Immunol, 2019, 10:594. |
[50] | SCHOENMAKER L, WITZIGMANN D, KULKARNI J A, et al. mRNA-lipid nanoparticle COVID-19 vaccines:structure and stability[J]. Int J Pharm, 2021, 601:120586. |
[51] | VERBEKE R, HOGAN M J, LORÉ K, et al. Innate immune mechanisms of mRNA vaccines[J]. Immunity, 2022, 55(11):1993-2005. |
[52] | COOLEN A L, LACROIX C, MERCIER-GOUY P, et al. Poly(lactic acid) nanoparticles and cell-penetrating peptide potentiate mRNA-based vaccine expression in dendritic cells triggering their activation[J]. Biomaterials, 2019, 195:23-37. |
[53] | PROBST J, WEIDE B, SCHEEL B, et al. Spontaneous cellular uptake of exogenous messenger RNA in vivo is nucleic acid-specific, saturable and ion dependent[J]. Gene Ther, 2007, 14(15):1175-1180. |
[54] | PARDI N, HOGAN M J, PORTER F W, et al. mRNA vaccines-a new era in vaccinology[J]. Nat Rev Drug Discov, 2018, 17(4):261-279. |
[55] | LINDSAY K E, BHOSLE S M, ZURLA C, et al. Visualization of early events in mRNA vaccine delivery in non-human primates via PET-CT and near-infrared imaging[J]. Nat Biomed Eng, 2019, 3(5):371-380. |
[56] | MVNZ C. Antigen processing for MHC class ii presentation via autophagy[J]. Front Immunol, 2012, 3:9. |
[57] | BELL G D, YANG Y, LEUNG E, et al. mRNA transfection by a Xentry-protamine cell-penetrating peptide is enhanced by TLR antagonist E6446[J]. PLoS One, 2018, 13(7):e0201464. |
[58] | BAEZA GARCIA A, SIU E, SUN T, et al. Neutralization of the Plasmodium-encoded MIF ortholog confers protective immunity against malaria infection[J]. Nat Commun, 2018, 9(1):2714. |
[59] | PARDI N, HOGAN M J, NARADIKIAN M S, et al. Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses[J]. J Exp Med, 2018, 215(6):1571-1588. |
[60] | MARUGGI G, CHIAROT E, GIOVANI C, et al. Immunogenicity and protective efficacy induced by self-amplifying mRNA vaccines encoding bacterial antigens[J]. Vaccine, 2017, 35(2):361-368. |
[61] | CORBETT K S, EDWARDS D K, LEIST S R, et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness[J]. Nature, 2020, 586(7830):567-571. |
[62] | THOMAS S J, MOREIRA E D Jr, KITCHIN N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine through 6 months[J]. N Engl J Med, 2021, 385(19):1761-1773. |
[63] | KADAMBARI S, EVANS C, LYALL H. Congenital infections:priorities and possibilities for resource-limited settings[J]. Pediatr Infect Dis J, 2023, 42(2):e45-e47. |
[64] | ABBASI J. Moderna's mRNA vaccine for seasonal flu enters clinical trials[J]. JAMA, 2021, 326(14):1365. |
[65] | FELDMAN R A, FUHR R, SMOLENOV I, et al. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials[J]. Vaccine, 2019, 37(25):3326-3334. |
[66] | ALDRICH C, LEROUX-ROELS I, HUANG K B, et al. Proof-of-concept of a low-dose unmodified mRNA-based rabies vaccine formulated with lipid nanoparticles in human volunteers:a phase 1 trial[J]. Vaccine, 2021, 39(8):1310-1318. |
[67] | KUMAR A, BLUM J, THANH LE T, et al. The mRNA vaccine development landscape for infectious diseases[J]. Nat Rev Drug Discov, 2022, 21(5):333-334. |
[68] | MURAMATSU H, LAM K, BAJUSZ C, et al. Lyophilization provides long-term stability for a lipid nanoparticle-formulated, nucleoside-modified mRNA vaccine[J]. Mol Ther, 2022, 30(5):1941-1951. |
[69] | RAHMAN T, SOBUR A, ISLAM S, et al. Zoonotic diseases:etiology, impact, and control[J]. Microorganisms, 2020, 8(9):1405. |
[70] | WOO P C Y, LAU S K P, HUANG Y, et al. Coronavirus diversity, phylogeny and interspecies jumping[J]. Exp Biol Med (Maywood), 2009, 234(10):1117-1127. |
[71] | GREANEY A J, LOES A N, GENTLES L E, et al. Antibodies elicited by mRNA-1273 vaccination bind more broadly to the receptor binding domain than do those from SARS-CoV-2 infection[J]. Sci Transl Med, 2021, 13(600):eabi9915. |
[72] | IZES A M, YU J, NORRIS J M, et al. Current status on treatment options for feline infectious peritonitis and SARS-CoV-2 positive cats[J]. Vet Quart, 2020, 40(1):322-330. |
[73] | ZHAO D M, LIU R Q, ZHANG X F, et al. Replication and virulence in pigs of the first African swine fever virus isolated in China[J]. Emerg Microbes Infect, 2019, 8(1):438-447. |
[74] | CHEN W Y, ZHAO D M, HE X J, et al. A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs[J]. Sci China Life Sci, 2020, 63(5):623-634. |
[75] | BORCA M V, RAMIREZ-MEDINA E, SILVA E, et al. ASFV-G-ΔI177L as an effective oral nasal vaccine against the Eurasia strain of Africa swine fever[J]. Viruses, 2021, 13(5):765. |
[76] | BORCA M V, RAMIREZ-MEDINA E, SILVA E, et al. Development of a highly effective African swine fever virus vaccine by deletion of the I177L gene results in sterile immunity against the current epidemic Eurasia strain[J]. J Virol, 2020, 94(7):e02017-19. |
[77] | ROS-LUCAS A, CORREA-FIZ F, BOSCH-CAMÓS L, et al. Computational analysis of African swine fever virus protein space for the design of an epitope-based vaccine ensemble[J]. Pathogens, 2020, 9(12):1078. |
[78] | BOSCH-CAMÓS L, LÓPEZ E, NAVAS M J, et al. Identification of promiscuous African swine fever virus T-cell determinants using a multiple technical approach[J]. Vaccines (Basel), 2021, 9(1):29. |
[79] | BURMAKINA G, MALOGOLOVKIN A, TULMAN E R, et al. Identification of T-cell epitopes in African swine fever virus CD2v and C-type lectin proteins[J]. J Gen Virol, 2019, 100(2):259-265. |
[80] | MOISE L, GUTIÉRREZ A H, KHAN S, et al. New immunoinformatics tools for swine:designing epitope-driven vaccines, predicting vaccine efficacy, and making vaccines on demand[J]. Front Immunol, 2020, 11:563362. |
[81] | PÉREZ-NÚÑEZ D, SUNWOO S Y, SÁNCHEZ E G, et al. Evaluation of a viral DNA-protein immunization strategy against African swine fever in domestic pigs[J]. Vet Immunol Immunopathol, 2019, 208:34-43. |
[1] | SUN Xiaojing, ZHANG Lei, TIAN Tian, MA Xi, YAO Jia, WANG Yang. Unravelling Toxoplasma Treatment: Conventional Drugs toward Nanomedicine [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1834-1844. |
[2] | LONG Qinqin, WEI Min, WANG Yuting, WEN Ming, PANG Feng. The Battle between Orf Virus and Host: Immune Response and Viral Immune Evasion Mechanisms [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1845-1853. |
[3] | WU Chunlin, ZHONG Lemiao, ZHAO Yan, LI Wenji, HUANG Xiaozi, WU Yijian. Transcriptomic Analysis on Responses of Chicken Trachea to Mycoplasma gallisepticum Strain MG-HY Infection [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2652-2662. |
[4] | ZHAO Xuyang, JIN Jiaxin, LU Wenlong, ZHANG Shuai, HUANG Li, ZHANG Gaiping, SUN Aijun, ZHUANG Guoqing. Advances in the Molecular Mechanism of Immune Escape of African Swine Fever Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2074-2082. |
[5] | ZHANG Na, WANG Fei, GE Ximin, ZHAO Guiping, WEN Jie, LI Qinghe. Correlation between the Expression Level of USP7 and the Immune Response to Salmonella Infection in Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2396-2402. |
[6] | WANG Luyao, HAO Xuepiao, LEI Baishi, ZHAO Kuan, ZHANG Wuchao, YUAN Wanzhe. Differential Expression of Transcriptome in Liver, Thymus and Ileum of Ducks Infected with Novel Goose Parvovirus [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2): 654-657. |
[7] | YIN Lei, PAN Xiaocheng, SHEN Xuehuai, ZHANG Danjun, DAI Yin, WANG Jieru. Analysis of Bone Marrow miRNA Expression Profiles in Salmonella enteric Serovar Pullorum-infected Chicks [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12): 4527-4534. |
[8] | ZHU Jingjing, DAI Zhenglie, WANG Han, LI Xiangchen, ZHAO Ayong, ZHOU Xiaolong, YANG Songbai. Analysis of Differential Expression Profile of LncRNA in PK15 Cells Infected with Japanese Encephalitis Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(1): 272-281. |
[9] | ZHANG Fanfan, ZENG Yanbing, FANG Shaopei, LI Haiqin, KANG Zhaofeng, TAN Meifang, TAN Jia, YANG Qun, WEI Qipeng. Research Progress in Duck Tembusu Virus Disease [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(6): 1489-1497. |
[10] | LI Xian, ZHANG Zhongwang, ZHANG Fudong, Lü Jianliang, LI Jiahao, PAN Li. Evaluation of the Characteristics of Mannosylated Chitosan PLGA Nanospheres as a Delivery System for DNA Vaccine of A/FMDV [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(12): 3557-3568. |
[11] | WANG Shubo, XU Yigang, CHEN Qiuyan, MEI Zhuyuan, CUI Wen, JIANG Yanping, ZHOU Han, WANG Li, QIAO Xinyuan, LI Yijing, TANG Lijie. Analysis of Immune Response Induced by Recombinant Lactobacillus reuteri Expressing Cap Protein of Porcine Circovirus Type 2 in Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(9): 2238-2249. |
[12] | WANG Shuli, ZHANG Huiru, BI Yanqi, WANG Dejuan, CHEN Lin, ZHANG Xiaoting, LI Zhiqiang. Analysis of Immune Responses Induced by Brucella Transcriptional Regulatory Factor HFQ [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(8): 1977-1984. |
[13] | SHAO Chunrong, HUANG Yuanpi, HUANG Yunmao, YING Shijia, XI Yumeng, SHI Zhendan. RNA-seq Analysis on the Renal Tissue Injury in the Development of Goslings Gout [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(3): 639-643. |
[14] | NI Aixin, MA Hui, CHEN Jilan. Research Progress of Parasite-derived Exosomes [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2019, 50(5): 909-917. |
[15] | LUO Yu, XU Jia, ZHANG Chaoying, JIANG Chunyan, HE Haijian, YU Jianguo, ZHANG Hongbing. The Expression and Functional Analysis of IL-17 Cytokine Family in Enterotoxigenic E.coli Infected IPEC-J2 Cells [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2019, 50(4): 830-839. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||