[1] |
CHEN H, DOU Y G, TANG Y, et al. Isolation and genomic characterization of a duck-origin GPV-related parvovirus from Cherry Valley ducklings in China[J]. PLoS One, 2015, 10(10):e0140284.
|
[2] |
LI P, LIN S, ZHANG R, et al. Isolation and characterization of novel goose parvovirus-related virus reveal the evolution of waterfowl parvovirus[J]. Transbound Emerg Dis, 2018, 65(2):e284-e295.
|
[3] |
PALYA V, ZOLNAI A, BENYEDA Z, et al. Short beak and dwarfism syndrome of mule duck is caused by a distinct lineage of goose parvovirus[J]. Avian Pathol, 2009, 38(2):175-180.
|
[4] |
CHEN S L, WANG S, CHENG X X, et al. Isolation and characterization of a distinct duck-origin goose parvovirus causing an outbreak of duckling short beak and dwarfism syndrome in China[J]. Arch Virol, 2016, 161(9):2407-2416.
|
[5] |
KAPGATE S S, KUMANAN K, VIJAYARANI K, et al. Avian parvovirus:classification, phylogeny, pathogenesis and diagnosis[J]. Avian Pathol, 2018, 47(6):536-545.
|
[6] |
刘荣昌, 黄瑜, 卢荣辉, 等. "短喙侏儒综合征"半番鸭病原学检测及病理组织学特征[J]. 中国兽医学报, 2018, 38(1):51-58.LIU R C, HUANG Y, LU R H, et al. Aetiology detection and histopathological features of "short beak dwarf syndrome" in mule ducks[J]. Chinese Journal of Veterinary Science, 2018, 38(1):51-58. (in Chinese)
|
[7] |
LIU H M, YANG C C, LIU M M, et al. Pathological lesions in the immune organs of ducklings following experimental infection with goose parvovirus[J]. Res Vet Sci, 2019, 125:212-217.
|
[8] |
陈兵, 徐婧, 罗启慧, 等. 感染鸭源小鹅瘟病毒QH-L01株樱桃谷雏鸭病理学研究[J]. 浙江农业学报, 2018, 30(6):932-938.CHEN B, XU J, LUO Q H, et al. Pathological study on duck-origin goose Parvovirus strain QH-L01 infection of Cherry Valley duck[J]. Acta Agriculturae Zhejiangensis, 2018, 30(6):932-938. (in Chinese)
|
[9] |
MOGENSEN T H. Pathogen recognition and inflammatory signaling in innate immune defenses[J]. Clin Microbiol Rev, 2009, 22(2):240-273.
|
[10] |
CHEN S L, FANG T H, XIAO S F, et al. Duckling short beak and dwarfism syndrome virus infection activates host innate immune response involving both DNA and RNA sensors[J]. Microb Pathog, 2020, 138:103816.
|
[11] |
LIAO X Z, XIE H, LI S L, et al. 2', 5'-oligoadenylate synthetase 2(OAS2) inhibits Zika virus replication through activation of type Ι IFN signaling pathway[J]. Viruses, 2020, 12(4):418.
|
[12] |
昝晓燕, 吴贻刚. 趋化因子配体19和趋化因子受体7在肥胖脂肪组织慢性炎症中的作用及有氧运动对其影响的研究进展[J]. 吉林大学学报:医学版, 2017, 43(3):659-662.ZAN X Y, WU Y G. Research progress in role of CCL19 and CCR7 in adipose tissue chronic inflammation and influence of aerobic exercise in CCL19-CCR signal[J]. Journal of Jilin University:Medicine Edition, 2017, 43(3):659-662.(in Chinese)
|
[13] |
任乐豪. 甲型H1N1流感病毒激活宿主HIF-1信号通路促进病毒自身复制的机制研究[D]. 上海:上海交通大学, 2019.REN L H.Study on the mechanism of activating host HIF-1 signaling pathway to promote virus replication by H1N1 virus[D].Shanghai:Shanghai Jiaotong University,2019.(in Chinese)
|
[14] |
DUETTE G, GERBER P P, RUBIONE J, et al. Induction of HIF-1α by HIV-1 infection in CD4+ T cells promotes viral replication and drives extracellular vesicle-mediated inflammation[J]. mBio, 2018, 9(5):e00757-18.
|
[15] |
HSIEH Y C, CHEN Y M, LI C Y, et al. To complete its replication cycle, a shrimp virus changes the population of long chain fatty acids during infection via the PI3K-Akt-mTOR-HIF1α pathway[J]. Dev Comp Immunol, 2015, 53(1):85-95.
|
[16] |
MENG X H, YANG D R, YU R, et al. EPSTI1 is involved in IL-28A-mediated inhibition of HCV infection[J]. Mediators Inflamm, 2015, 2015:716315.
|