Acta Veterinaria et Zootechnica Sinica ›› 2022, Vol. 53 ›› Issue (7): 2074-2082.doi: 10.11843/j.issn.0366-6964.2022.07.005
• REVIEW • Previous Articles Next Articles
ZHAO Xuyang1, JIN Jiaxin1, LU Wenlong1, ZHANG Shuai1, HUANG Li2, ZHANG Gaiping1, SUN Aijun1*, ZHUANG Guoqing1*
Received:
2021-11-08
Online:
2022-07-23
Published:
2022-07-23
CLC Number:
ZHAO Xuyang, JIN Jiaxin, LU Wenlong, ZHANG Shuai, HUANG Li, ZHANG Gaiping, SUN Aijun, ZHUANG Guoqing. Advances in the Molecular Mechanism of Immune Escape of African Swine Fever Virus[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2074-2082.
[1] | SALGUERO F J. Comparative pathology and pathogenesis of African swine fever infection in swine[J]. Front Vet Sci, 2020, 7:282. |
[2] | 孙爱军,王芮,朱潇静,等.非洲猪瘟相关检测及猪场生物安全防控研究进展[J].中国兽医学报, 2021, 41(5):1023-1030.SUN A J, WANG R, ZHU X J, et al. Review on African swine fever-associated detection and pig farm biosecurity control measurement development[J]. Chinese Journal of Veterinary Science, 2021, 41(5):1023-1030.(in Chinese) |
[3] | GAUDREAULT N N, MADDEN D W, WILSON W C, et al. African swine fever virus:an emerging DNA arbovirus[J]. Front Vet Sci, 2020, 7:215. |
[4] | ALEJO A, MATAMOROS T, GUERRA M, et al. A proteomic atlas of the African swine fever virus particle[J]. J Virol, 2018, 92(23):e01293-18. |
[5] | SUN T W, YANG C L, KAO T T, et al. Host range and coding potential of eukaryotic giant viruses[J]. Viruses, 2020, 12(11):1337. |
[6] | OZGEN A, MURATOGLU H, DEMIRBAG Z, et al. Construction and characterization of a recombinant invertebrate iridovirus[J]. Virus Res, 2014, 189:286-292. |
[7] | DIXON L K, SÁNCHEZ-CORDÓN P J, GALINDO I, et al. Investigations of pro-and anti-apoptotic factors affecting African swine fever virus replication and pathogenesis[J]. Viruses, 2017, 9(9):241. |
[8] | LAWLER C, BRADY G. Poxviral targeting of interferon regulatory factor activation[J]. Viruses, 2020, 12(10):1191. |
[9] | DE PAIVA E ALMEIDA S C, DE OLIVEIRA V L, PARKHOUSE R M E. Impact on antibody responses of B-cell-restricted transgenic expression of a viral gene inhibiting activation of NF-κB and NFAT[J]. Arch Virol, 2015, 160(6):1477-1488. |
[10] | ALONSO C, GALINDO I, CUESTA-GEIJO M A, et al. African swine fever virus-cell interactions:from virus entry to cell survival[J]. Virus Res, 2013, 173(1):42-57. |
[11] | FRANZONI G, GRAHAM S P, GIUDICI S D, et al. Characterization of the interaction of African swine fever virus with monocytes and derived macrophage subsets[J]. Vet Microbiol, 2017, 198:88-98. |
[12] | SALAS M L, ANDRÉS G. African swine fever virus morphogenesis[J]. Virus Res, 2013, 173(1):29-41. |
[13] | LI D, YANG W P, LI L L, et al. African swine fever virus MGF-505-7R negatively regulates cGAS-STING-mediated signaling pathway[J]. J Immunol, 2021, 206(8):1844-1857. |
[14] | LI J N, SONG J, KANG L, et al. pMGF505-7R determines pathogenicity of African swine fever virus infection by inhibiting IL-1β and type I IFN production[J]. PLoS Pathog, 2021, 17(7):e1009733. |
[15] | BARRADO-GIL L, DEL PUERTO A, GALINDO I, et al. African swine fever virus ubiquitin-conjugating enzyme is an immunomodulator targeting NF-κB activation[J]. Viruses, 2021, 13(6):1160. |
[16] | LI D, ZHANG J, YANG W P, et al. African swine fever virus protein MGF-505-7R promotes virulence and pathogenesis by inhibiting JAK1-and JAK2-mediated signaling[J]. J Biol Chem, 2021, 297(5):101190. |
[17] | DE OLIVEIRA V L, ALMEIDA S C P, SOARES H R, et al. A novel TLR3 inhibitor encoded by African swine fever virus (ASFV)[J]. Arch Virol, 2011, 156(4):597-609. |
[18] | ZHU J J, RAMANATHAN P, BISHOP E A, et al. Mechanisms of African swine fever virus pathogenesis and immune evasion inferred from gene expression changes in infected swine macrophages[J]. PLoS One, 2019, 14(11):e0223955. |
[19] | ESCRIBANO J M, GALINDO I, ALONSO C. Antibody-mediated neutralization of African swine fever virus:myths and facts[J]. Virus Res, 2013, 173(1):101-109. |
[20] | OURA C A L, DENYER M S, TAKAMATSU H, et al. In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus[J]. J Gen Virol, 2005, 86(Pt 9):2445-2450. |
[21] | CHEN X X, YANG J F, JI Y H, et al. Recombinant Newcastle disease virus expressing African swine fever virus protein 72 is safe and immunogenic in mice[J]. Virol Sin, 2016, 31(2):150-159. |
[22] | 王西西,陈青,陈鸿军,等.非洲猪瘟病毒免疫逃逸相关蛋白研究进展[J].病毒学报, 2018, 34(6):929-935.WANG X X, CHEN Q, CHEN H J, et al. Research progress on immune evasion proteins of African swine fever virus[J]. Chinese Journal of Virology, 2018, 34(6):929-935.(in Chinese) |
[23] | RANDALL R E, GOODBOURN S. Interferons and viruses:an interplay between induction, signalling, antiviral responses and virus countermeasures[J]. J Gen Virol, 2008, 89(Pt 1):1-47. |
[24] | FAN W H, JIAO P T, ZHANG H, et al. Inhibition of African swine fever virus replication by porcine type I and type II interferons[J]. Front Microbiol, 2020, 11:1203. |
[25] | DIXON L K, ISLAM M, NASH R, et al. African swine fever virus evasion of host defences[J]. Virus Res, 2019, 266:25-33. |
[26] | AFONSO C L, PICCONE M E, ZAFFUTO K M, et al. African swine fever virus multigene family 360 and 530 genes affect host interferon response[J]. J Virol, 2004, 78(4):1858-1864. |
[27] | 申超超,李国丽,张大俊,等.非洲猪瘟病毒MGF 360-9L基因序列分析、蛋白结构预测及亚细胞定位[J].畜牧兽医学报, 2020, 51(6):1371-1381.SHEN C C, LI G L, ZHANG D J, et al. Gene sequence analysis, protein structure prediction and subcellular localization of MGF 360-9L from African swine fever virus[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(6):1371-1381.(in Chinese) |
[28] | CORREIA S, VENTURA S, PARKHOUSE R M. Identification and utility of innate immune system evasion mechanisms of ASFV[J]. Virus Res, 2013, 173(1):87-100. |
[29] | ZHUO Y S, GUO Z H, BA T T, et al. African swine fever virus MGF360-12L inhibits type I interferon production by blocking the interaction of importin α and NF-κB signaling pathway[J]. Virol Sin, 2021, 36(2):176-186. |
[30] | LIU X L, AO D, JIANG S, et al. African swine fever virus A528R inhibits TLR8 mediated NF-κB activity by targeting p65 activation and nuclear translocation[J]. Viruses, 2021, 13(10):2046. |
[31] | YANG K D, HUANG Q T, WANG R Y, et al. African swine fever virus MGF505-11R inhibits type I interferon production by negatively regulating the cGAS-STING-mediated signaling pathway[J]. Vet Microbiol, 2021, 263:109265. |
[32] | GAO Q, YANG Y L, QUAN W P, et al. The African swine fever virus with MGF360 and MGF505 deleted reduces the apoptosis of porcine alveolar macrophages by inhibiting the NF-κB signaling pathway and interleukin-1β[J]. Vaccines (Basel), 2021, 9(11):1371. |
[33] | 谭星,庞晓燕,郝秀静,等.胞质DNA感受器cGAS的研究进展[J].中国免疫学杂志, 2021, 37(21):2569-2574, 2579.TAN X, PANG X Y, HAO X J, et al. Research progress in cytoplasmic DNA sensors cGAS[J]. Chinese Journal of Immunology, 2021, 37(21):2569-2574, 2579.(in Chinese) |
[34] | WANG X X, WU J, WU Y T, et al. Inhibition of cGAS-STING-TBK1 signaling pathway by DP96R of ASFV China 2018/1[J]. Biochem Biophys Res Commun, 2018, 506(3):437-443. |
[35] | GARCÍA-BELMONTE R, PÉREZ-NU'ÑEZ D, PITTAU M, et al. African swine fever virus Armenia/07 virulent strain controls interferon beta production through the cGAS-STING pathway[J]. J Virol, 2019, 93(12):e02298-18. |
[36] | LIU H S, ZHU Z X, FENG T, et al. African swine fever virus E120R protein inhibits interferon beta production by interacting with IRF3 to block its activation[J]. J Virol, 2021, 95(18):e0082421. |
[37] | MISKIN J E, ABRAMS C C, DIXON L K. African swine fever virus protein A238L interacts with the cellular phosphatase calcineurin via a binding domain similar to that of NFAT[J]. J Virol, 2000, 74(20):9412-9420. |
[38] | GRANJA A G, NOGAL M L, HURTADO C, et al. The viral protein A238L inhibits TNF-α expression through a CBP/p300 transcriptional coactivators pathway[J]. J Immunol, 2006, 176(1):451-462. |
[39] | GRANJA A G, PERKINS N D, REVILLA Y. Correction:A238L inhibits NF-ATc2, NF-κB, and c-Jun activation through a novel mechanism involving protein kinase C-θ-mediated up-regulation of the amino-terminal transactivation domain of p300[J]. J Immunol, 2015, 194(4):2032. |
[40] | GRIGORIU S, BOND R, COSSIO P, et al. The molecular mechanism of substrate engagement and immunosuppressant inhibition of calcineurin[J]. PLoS Biol, 2013, 11(2):e1001492. |
[41] | GRANJA A G, NOGAL M L, HURTADO C, et al. The viral protein A238L inhibits cyclooxygenase-2 expression through a nuclear factor of activated T cell-dependent transactivation pathway[J]. J Biol Chem, 2004, 279(51):53736-53746. |
[42] | BORCA M V, O'DONNELL V, HOLINKA L G, et al. The L83L ORF of African swine fever virus strain Georgia encodes for a non-essential gene that interacts with the host protein IL-1β[J]. Virus Res, 2018, 249:116-123. |
[43] | CARRASCOSA A L, BUSTOS M J, NOGAL M L, et al. Apoptosis induced in an early step of African swine fever virus entry into vero cells does not require virus replication[J]. Virology, 2002, 294(2):372-382. |
[44] | DANTHI P. Enter the kill zone:initiation of death signaling during virus entry[J]. Virology, 2011, 411(2):316-324. |
[45] | VALLEE I, TAIT S W G, POWELL P P. African swine fever virus infection of porcine aortic endothelial cells leads to inhibition of inflammatory responses, activation of the thrombotic state, and apoptosis[J]. J Virol, 2001, 75(21):10372-10382. |
[46] | PORTUGAL R, LEITÃO A, MARTINS C. Apoptosis in porcine macrophages infected in vitro with African swine fever virus (ASFV) strains with different virulence[J]. Arch Virol, 2009, 154(9):1441-1450. |
[47] | BANJARA S, CARIA S, DIXON L K, et al. Structural insight into African swine fever virus A179L-mediated inhibition of apoptosis[J]. J Virol, 2017, 91(6):e02228-16. |
[48] | BARBER C, NETHERTON C, GOATLEY L, et al. Identification of residues within the African swine fever virus DP71L protein required for dephosphorylation of translation initiation factor eIF2α and inhibiting activation of pro-apoptotic CHOP[J]. Virology, 2017, 504:107-113. |
[49] | KOYAMA A H, ADACHI A, IRIE H. Physiological significance of apoptosis during animal virus infection[J]. Int Rev Immunol, 2003, 22(5-6):341-359. |
[50] | ORVEDAHL A, ALEXANDER D, TALLÓCZY Z, et al. HSV-1 ICP34. 5 confers neurovirulence by targeting the Beclin 1 autophagy protein[J]. Cell Host Microbe, 2007, 1(1):23-35. |
[51] | HERNAEZ B, CABEZAS M, MUNOZ-MORENO R, et al. A179L, a new viral Bcl2 homolog targeting Beclin 1 autophagy related protein[J]. Curr Mol Med, 2013, 13(2):305-316. |
[52] | CHEN S, ZHANG X H, NIE Y, et al. African swine fever virus protein E199L promotes cell autophagy through the interaction of PYCR2[J]. Virol Sin, 2021, 36(2):196-206. |
[53] | DREUX M, CHISARI F V. Viruses and the autophagy machinery[J]. Cell Cycle, 2010, 9(7):1295-1307. |
[54] | SHIMMON G L, HUI J Y K, WILEMAN T E, et al. Autophagy impairment by African swine fever virus[J]. J Gen Virol, 2021, 102(8):001637. |
[55] | RIVERA J, ABRAMS C, HERNAEZ B, et al. The MyD116 African swine fever virus homologue interacts with the catalytic subunit of protein phosphatase 1 and activates its phosphatase activity[J]. J Virol, 2007, 81(6):2923-2929. |
[56] | LIU Q, HU W, ZHANG Y L, et al. Anti-viral immune response in the lung and thymus:Molecular characterization and expression analysis of immunoproteasome subunits LMP2, LMP7 and MECL-1 in pigs[J]. Biochem Biophys Res Commun, 2018, 502(4):472-478. |
[57] | HURTADO C, GRANJA A G, BUSTOS M J, et al. The C-type lectin homologue gene (EP153R) of African swine fever virus inhibits apoptosis both in virus infection and in heterologous expression[J]. Virology, 2004, 326(1):160-170. |
[58] | HURTADO C, BUSTOS M J, GRANJA A G, et al. The African swine fever virus lectin EP153R modulates the surface membrane expression of MHC class I antigens[J]. Arch Virol, 2011, 156(2):219-234. |
[59] | JIA N, OU Y W, PEJSAK Z, et al. Roles of African swine fever virus structural proteins in viral infection[J]. J Vet Res, 2017, 61(2):135-143. |
[60] | CHAULAGAIN S, DELHON G A, KHATIWADA S, et al. African swine fever virus CD2v protein induces β-interferon expression and apoptosis in swine peripheral blood mononuclear cells[J]. Viruses, 2021, 13(8):1480. |
[61] | SUN W Q, ZHANG H, FAN W H, et al. Evaluation of cellular immunity with ASFV infection by swine leukocyte antigen (SLA)-peptide tetramers[J]. Viruses, 2021, 13(11):2264. |
[62] | CHEN W Y, ZHAO D M, HE X J, et al. A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs[J]. Sci China Life Sci, 2020, 63(5):623-634. |
[63] | GALLARDO C, SOLER A, RODZE I, et al. Attenuated and non-haemadsorbing (non-HAD) genotype II African swine fever virus (ASFV) isolated in Europe, Latvia 2017[J]. Transbound Emerg Dis, 2019, 66(3):1399-1404. |
[64] | GAVIER-WIDÉN D, STÅHL K, DIXON L. No hasty solutions for African swine fever[J]. Science, 2020, 367(6478):622-624. |
[65] | YANG J N, TANG K C, CAO Z D, et al. Demand-driven spreading patterns of African swine fever in China[J]. Chaos, 2021, 31(6):061102. |
[66] | SÁNCHEZ E G, PÉREZ-NU'ÑEZ D, REVILLA Y. Development of vaccines against African swine fever virus[J]. Virus Res, 2019, 265:150-155. |
[1] | ZHOU Yang, WU Weizi, CAO Weisheng, WANG Fuguang, XU Xiuqiong, ZHONG Wenxia, WU Liyang, YE Jian, LU Shousheng. A Whole Genome Sequencing Method for African Swine Fever Virus based on Nanopore Sequencing Technology was Established [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2080-2089. |
[2] | YAN Wenqian, HOU Jing, YANG Jinke, HAO Yu, YANG Xing, SHI Xijuan, ZHANG Dajun, BIE Xintian, CHEN Guohui, CHEN Lingling, HE Lu, ZHAO Meiyu, ZHAO Siyue, ZHENG Haixue, ZHANG Keshan. Monoclonal Antibody against D1133 L Protein of African Swine Fever Virus Inhibits Its Replication [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 854-859. |
[3] | BAI Yun, XIE Qingyun, OUYANG Wei, GAN Yuan, YUAN Ting, ZHAO Dongming, BU Zhigao, SHAO Guoqing, FENG Zhixin. Establishment of a Serological Method for Early Detection of African Swine Fever Virus Infection Based on Mucosal sIgA Antibody [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 300-310. |
[4] | LIU Chuanxia, WANG Xiao, LI Xuewen, BAO Miaofei, LI Tingting, CHEN Xin, WENG Changjiang, ZHENG Jun. Preparation of Monoclonal Antibody of African Swine Fever Virus pE120R [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 388-394. |
[5] | FENG Yongzhi, GONG Ting, WU Dongdong, GAO Qi, ZHENG Xiaoyu, ZHANG Guihong, SUN Yankuo. Analysis of Factors Affecting the Infectivity of African Swine Fever Virus on Cultured Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3406-3414. |
[6] | LIU Taoxue, SU Bingqian, QI Yanli, GUO Jiangtao, LIU Zhonghu, CHU Beibei, WANG Jiang, ZENG Lei. Preparation of the Monoclonal Antibody against the African Swine Fever Virus p30 Protein and Identification of the Antigenic Epitope [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3415-3423. |
[7] | CHEN Xin, QIN Tong. mRNA Vaccine and Its Research Prospect in Zoonotic Diseases [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2732-2742. |
[8] | DING Xiaoyan, HE Jiuxiang, ZHOU Xiaoyang, ZHOU Yuxin, LI Jintao. Preliminary Identification of Host Regulatory Genes and Virulence Genes during African Swine Fever Virus Infection [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2964-2971. |
[9] | WANG Ying, ZHU Jiahong, ZHAO Jiakai, JI Pinpin, CHEN Xu, ZHANG Lu, LIU Baoyuan, SUN Yani, ZHAO Qin. Screening and Identification of Nanobodies against NP419L Protein of African Swine Fever Virus and Its Preliminary Application of Antibody Detection [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2509-2520. |
[10] | LIU Wenhao, ZHU Yance, ZHANG Dongxuan, WANG Zhihao, ZHANG Chao. Construction of PK 15 Cell Line Stably Expressing African Swine Fever Virus E165R Protein [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2662-2666. |
[11] | LONG Qinqin, WEI Min, WANG Yuting, WEN Ming, PANG Feng. The Battle between Orf Virus and Host: Immune Response and Viral Immune Evasion Mechanisms [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1845-1853. |
[12] | WANG Guochao, ZHAO Yaru, ZHANG Zhonghui, ZHANG Yulong, BAI Ge, GENG Shuxian, FAN Jie, YANG Jifei, GUAN Guiquan, YIN Hong, LUO Jianxun, NIU Qingli. Bioinformatics Analysis of RNA Polymerase Subunit D205R Gene of African Swine Fever Virus and Polyclonal Antibody Preparation [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 2042-2049. |
[13] | ZHANG Ting, FENG Tao, YANG Jinke, HAO Yu, YANG Xing, ZHANG Dajun, SHI Xijuan, YAN Wenqian, CHEN Lingling, LIU Xiangtao, ZHENG Haixue, ZHANG Keshan. Construction and Growth Characteristics of Recombinant African Swine Fever Virus with Conditional Deletion of D1133L Gene [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 706-714. |
[14] | ZHANG Fangyuan, YANG Dawei, QIU Deyang, JIANG Guoqian, LI Guimei, SHAN Hu. Expression of ASFV P30 Protein and Development of ASFV Antibody Detection Method Based on x-MAP Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4300-4310. |
[15] | XIE Qingyun, YI Weijie, LI Jiahao, BAI Yun, XIE Xing, YUAN Ting, ZHANG Yue, FENG Yufan, ZHAO Dongming, BU Zhigao, LIU Fei, FENG Zhixin. Development of Quantum Dot Microsphere-based Immunostrip for Early Detection of Specific sIgA Antibody to African Swine Fever Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4311-4319. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||