Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (9): 3802-3811.doi: 10.11843/j.issn.0366-6964.2024.09.006
• Review • Previous Articles Next Articles
Fangzhou WANG1,2(), Lingyun TAN2, Yan LI2, Hongjing GU2,*(), Hui WANG1,2,*()
Received:
2023-11-13
Online:
2024-09-23
Published:
2024-09-27
Contact:
Hongjing GU, Hui WANG
E-mail:wfz147658@163.com;ghj0048@163.com;geno0109@vip.sina.com
CLC Number:
Fangzhou WANG, Lingyun TAN, Yan LI, Hongjing GU, Hui WANG. Progress on the Characteristics of Virus-encoded Proteins and Pathogenic Mechanism of Henipavirus[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3802-3811.
Table 1
Henipavirus encodes proteins and their main functions"
病毒蛋白 Viral protein | 氨基酸数量/aa Amino acid number | 相对分子质量/ku Relative molecular weight | 主要功能 Main functions | 参考文献 References |
核衣壳蛋白 Nucleoprotein | 532 | 58 | 病毒的主要结构蛋白,附着病毒RNA形成RNPs | [ |
磷酸化蛋白 Phosphoprotein | 709 | 78 | 病毒磷酸化蛋白,聚合酶辅助因子,对干扰素可产生拮抗效果 | [ |
基质蛋白 Matrix protein | 352 | 39 | 负责介导病毒组装和出芽 | [ |
融合糖蛋白 Fusion protein | 546 | 60 | 介导病毒包膜与细胞膜融合,主要抗原蛋白 | [ |
附着糖蛋白 Glycoprotein | 602 | 66 | 介导病毒与细胞受体的结合,主要抗原蛋白 | [ |
大蛋白 Polymerase | 2 244 | 247 | 高度保守,具有RNA聚合酶活性,主要参与病毒的复制和转录 | [ |
C蛋白 C protein | 166 | 18 | 调节病毒RNA合成和毒力因子产生 | [ |
V蛋白 V protein | 456 | 50 | 抑制宿主细胞免疫反应,HNV发病机制和致死性的主要决定因素 | [ |
W蛋白 W protein | 450 | 50 | 控制炎症反应,影响疾病进程 | [ |
1 |
LI H Z , KIM J V , PICKERING B S . Henipavirus zoonosis: outbreaks, animal hosts and potential new emergence[J]. Front Microbiol, 2023, 14, 1167085.
doi: 10.3389/fmicb.2023.1167085 |
2 | JOHNSTON G P , BRADEL-TRETHEWAY B , PIEHOWSKI P D , et al. Nipah virus-like particle egress is modulated by cytoskeletal and vesicular trafficking pathways: a validated particle proteomics analysis[J]. Msystems, 2019, 4 (5): e00194- 19. |
3 |
MARSH G A , DE JONG C , BARR J A , et al. Cedar virus: a novel Henipavirus isolated from Australian bats[J]. PLoS Pathog, 2012, 8 (8): e1002836.
doi: 10.1371/journal.ppat.1002836 |
4 | WU Z Q , YANG L , YANG F , et al. Novel henipa-like virus, Mojiang paramyxovirus, in rats, China, 2012[J]. Emerg Infect Dis, 2014, 20 (6): 1064- 1066. |
5 |
TABASSUM S , NAEEM A , REHAN S T , et al. Langya virus outbreak in China, 2022:are we on the verge of a new pandemic?[J]. J Virus Erad, 2022, 8 (3): 100087.
doi: 10.1016/j.jve.2022.100087 |
6 |
DREXLER J F , CORMAN V M , MVLLER M A , et al. Bats host major mammalian paramyxoviruses[J]. Nat Commun, 2012, 3, 796.
doi: 10.1038/ncomms1796 |
7 |
TSIMBALYUK S , CROSS E M , HOAD M , et al. The intrinsically disordered w protein is multifunctional during henipavirus infection, disrupting host signalling pathways and nuclear import[J]. Cells, 2020, 9 (8): 1913.
doi: 10.3390/cells9081913 |
8 |
LAWRENCE P , ESCUDERO-PÉREZ B . Henipavirus immune evasion and pathogenesis mechanisms: lessons learnt from natural infection and animal models[J]. Viruses, 2022, 14 (5): 936.
doi: 10.3390/v14050936 |
9 | LUBY S P, BRODER C C. Paramyxoviruses: henipaviruses[M]//KASLOW R A, STANBERRY L R, POWERS A M. Viral Infections of Humans: Epidemiology and Control. New York: Springer, 2020: 1-51. |
10 |
FIELD H E . Hendra virus ecology and transmission[J]. Curr Opin Virol, 2016, 16, 120- 125.
doi: 10.1016/j.coviro.2016.02.004 |
11 |
AIYAR A , PINGALI P . Pandemics and food systems-towards a proactive food safety approach to disease prevention & management[J]. Food Secur, 2020, 12 (4): 749- 756.
doi: 10.1007/s12571-020-01074-3 |
12 |
SINGH R K , DHAMA K , CHAKRABORTY S , et al. Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies-a comprehensive review[J]. Vet Quart, 2019, 39 (1): 26- 55.
doi: 10.1080/01652176.2019.1580827 |
13 |
AZARM K D , LEE B . Differential features of fusion activation within the Paramyxoviridae[J]. Viruses, 2020, 12 (2): 161.
doi: 10.3390/v12020161 |
14 |
WANG Z Q , AMAYA M , ADDETIA A , et al. Architecture and antigenicity of the Nipah virus attachment glycoprotein[J]. Science, 2022, 375 (6587): 1373- 1378.
doi: 10.1126/science.abm5561 |
15 |
VOIGT K , HOFFMANN M , DREXLER J F , et al. Fusogenicity of the ghana virus (Henipavirus: Ghanaian bat henipavirus) fusion protein is controlled by the cytoplasmic domain of the attachment glycoprotein[J]. Viruses, 2019, 11 (9): 800.
doi: 10.3390/v11090800 |
16 |
PRIYADARSINEE L , SARMA H , SASTRY G N . Glycoprotein attachment with host cell surface receptor ephrin B2 and B3 in mediating entry of nipah and hendra virus: a computational investigation[J]. J Chem Sci (Bangalore), 2022, 134 (4): 114.
doi: 10.1007/s12039-022-02110-9 |
17 |
PRYCE R , AZARM K , RISSANEN I , et al. A key region of molecular specificity orchestrates unique ephrin-B1 utilization by Cedar virus[J]. Life Sci Alliance, 2020, 3 (1): e201900578.
doi: 10.26508/lsa.201900578 |
18 |
RISSANEN I , AHMED A A , AZARM K , et al. Idiosyncratic Mòjiāng virus attachment glycoprotein directs a host-cell entry pathway distinct from genetically related henipaviruses[J]. Nat Commun, 2017, 8, 16060.
doi: 10.1038/ncomms16060 |
19 |
LAING E D , NAVARATNARAJAH C K , CHELIOUT DA SILVA S , et al. Structural and functional analyses reveal promiscuous and species specific use of ephrin receptors by Cedar virus[J]. Proc Natl Acad Sci U S A, 2019, 116 (41): 20707- 20715.
doi: 10.1073/pnas.1911773116 |
20 |
LI K M , YAN S Y , WANG N N , et al. Emergence and adaptive evolution of Nipah virus[J]. Transbound Emerg Dis, 2020, 67 (1): 121- 132.
doi: 10.1111/tbed.13330 |
21 |
YEO Y Y , BUCHHOLZ D W , GAMBLE A , et al. Headless henipaviral receptor binding glycoproteins reveal fusion modulation by the head/stalk interface and post-receptor binding contributions of the head domain[J]. J Virol, 2021, 95 (20): e0066621.
doi: 10.1128/JVI.00666-21 |
22 |
BRODER C C . Henipavirus outbreaks to antivirals: the current status of potential therapeutics[J]. Curr Opin Virol, 2012, 2 (2): 176- 187.
doi: 10.1016/j.coviro.2012.02.016 |
23 |
KRVGER N , HOFFMANN M , DREXLER J F , et al. Attachment protein G of an African bat henipavirus is differentially restricted in chiropteran and nonchiropteran cells[J]. J Virol, 2014, 88 (20): 11973- 11980.
doi: 10.1128/JVI.01561-14 |
24 |
XU K , CHAN Y P , BRADEL-TRETHEWAY B , et al. Crystal structure of the pre-fusion nipah virus fusion glycoprotein reveals a novel hexamer-of-trimers assembly[J]. PLoS Pathog, 2015, 11 (12): e1005322.
doi: 10.1371/journal.ppat.1005322 |
25 | ZAMORA J L R , ORTEGA V , JOHNSTON G P , et al. Novel roles of the N1 loop and N4 alpha-helical region of the nipah virus fusion glycoprotein in modulating early and late steps of the membrane fusion cascade[J]. J Virol, 2021, 95 (9): e01707- 20. |
26 |
MAY A J , POTHULA K R , JANOWSKA K , et al. Structures of langya virus fusion protein ectodomain in pre- and postfusion conformation[J]. J Virol, 2023, 97 (6): e0043323.
doi: 10.1128/jvi.00433-23 |
27 |
AHMAD S , NAZARIAN S , ALIZADEH A , et al. Computational design of a multi-epitope vaccine candidate against Langya henipavirus using surface proteins[J]. J Biomol Struct Dyn, 2023,
doi: 10.1080/07391102.2023.2258403 |
28 |
DANG H V , CROSS R W , BORISEⅥCH V , et al. Broadly neutralizing antibody cocktails targeting Nipah virus and Hendra virus fusion glycoproteins[J]. Nat Struct Mol Biol, 2021, 28 (5): 426- 434.
doi: 10.1038/s41594-021-00584-8 |
29 |
BYRNE P O , FISHER B E , AMBROZAK D R , et al. Structural basis for antibody recognition of vulnerable epitopes on Nipah virus F protein[J]. Nat Commun, 2023, 14 (1): 1494.
doi: 10.1038/s41467-023-36995-y |
30 | CIFUENTES-MUÑOZ N , SUN W N , RAY G , et al. Mutations in the transmembrane domain and cytoplasmic tail of hendra virus fusion protein disrupt virus-like-particle assembly[J]. J Virol, 2017, 91 (14): e00152- 17. |
31 |
MCLINTON E C , WAGSTAFF K M , LEE A , et al. Nuclear localization and secretion competence are conserved among henipavirus matrix proteins[J]. J Gen Virol, 2017, 98 (4): 563- 576.
doi: 10.1099/jgv.0.000703 |
32 |
BHARAJ P , WANG Y E , DAWES B E , et al. The matrix protein of nipah virus targets the E3-ubiquitin ligase TRIM6 to inhibit the IKKε kinase-mediated Type-Ⅰ IFN antiviral response[J]. PLoS Pathog, 2016, 12 (9): e1005880.
doi: 10.1371/journal.ppat.1005880 |
33 |
STROH E , FISCHER K , SCHWAIGER T , et al. Henipavirus-like particles induce a CD8 T cell response in C57BL/6 mice[J]. Vet Microbiol, 2019, 237, 108405.
doi: 10.1016/j.vetmic.2019.108405 |
34 | 肖昌. 亨得拉和尼帕病毒结构蛋白的表达及抗原表位研究[D]. 长春: 吉林大学, 2006. |
XIAO C. Expression and epitopes mapping of structural proteinsof hendra and nipah virus[D]. Changchun: Jilin University, 2006. (in Chinese) | |
35 | 张体银, 王武军, 张志灯, 等. 尼帕病毒蛋白功能研究进展[J]. 畜牧与兽医, 2014, 46 (8): 115- 118. |
ZHANG T Y , WANG W J , ZHANG Z D , et al. Progress in the functional study of Nipah virus proteins[J]. Animal Husbandry and Veterinary Medicine, 2014, 46 (8): 115- 118. | |
36 |
MCNABB L , ANDIANI A , BULAVAITE A , et al. Development and validation of an IgM antibody capture ELISA for early detection of Hendra virus[J]. J Virol Methods, 2021, 298, 114296.
doi: 10.1016/j.jviromet.2021.114296 |
37 | SUGAI A , SATO H , TAKAYAMA I , et al. Nipah and hendra virus nucleoproteins inhibit nuclear accumulation of signal transducer and activator of transcription 1 (STAT1) and STAT2 by interfering with their complex formation[J]. J Virol, 2017, 91 (21): e01136- 17. |
38 |
DOCHOW M , KRUMM S A , CROWE J E JR , et al. Independent structural domains in paramyxovirus polymerase protein[J]. J Biol Chem, 2012, 287 (9): 6878- 6891.
doi: 10.1074/jbc.M111.325258 |
39 |
VELKOV T , CARBONE V , AKTER J , et al. The RNA-dependent-RNA polymerase, an emerging antiviral drug target for the Hendra virus[J]. Curr Drug Targets, 2014, 15 (1): 103- 113.
doi: 10.2174/1389450114888131204163210 |
40 | POCH O , BLUMBERG B M , BOUGUELERET L , et al. Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains[J]. J Gen Virol, 1990, 71 (Pt 5): 1153- 1162. |
41 |
BRUHN J F , HOTARD A L , SPIROPOULOU C F , et al. A conserved basic patch and central kink in the nipah virus phosphoprotein multimerization domain are essential for polymerase function[J]. Structure, 2019, 27 (4): 660- 668. e4.
doi: 10.1016/j.str.2019.01.012 |
42 | 袁军龙, 袁东波, 尹念春. 尼帕病毒病病原及防治概述[J]. 中国动物保健, 2021, 23 (4): 114- 115. |
YUAN J L , YUAN D B , YIN N C . Overview of the pathogenesis and control of Nipah virus disease[J]. China Animal Health, 2021, 23 (4): 114- 115. | |
43 | LO M K , HARCOURT B H , MUNGALL B A , et al. Determination of the henipavirus phosphoprotein gene mRNA editing frequencies and detection of the C, V and W proteins of Nipah virus in virus-infected cells[J]. J Gen Virol, 2009, 90 (Pt 2): 398- 404. |
44 | KEIFFER T R , CIANCANELLI M J , EDWARDS M R , et al. Interactions of the nipah virus P, V, and W proteins across the STAT family of transcription factors[J]. Msphere, 2020, 5 (6): e00449- 20. |
45 | SATTERFIELD B A , CROSS R W , FENTON K A , et al. The immunomodulating V and W proteins of Nipah virus determine disease course[J]. Nat Commun, 2015, 6, 7483. |
46 | ENCHÉRY F , DUMONT C , IAMPIETRO M , et al. Nipah virus W protein harnesses nuclear 14-3-3 to inhibit NF-κB-induced proinflammatory response[J]. Commun Biol, 2021, 4 (1): 1292. |
47 | LO M K , PEEPLES M E , BELLINI W J , et al. Distinct and overlapping roles of Nipah virus P gene products in modulating the human endothelial cell antiviral response[J]. PLoS One, 2012, 7 (10): e47790. |
48 | PESCE G , GONDELAUD F , PTCHELKINE D , et al. Experimental evidence of intrinsic disorder and amyloid formation by the Henipavirus W proteins[J]. Int J Mol Sci, 2022, 23 (2): 923. |
49 | ESCAFFRE O , BORISEⅥCH V , ROCKX B . Pathogenesis of Hendra and Nipah virus infection in humans[J]. J Infect Dev Ctries, 2013, 7 (4): 308- 311. |
50 | QUARLERI J , GALVAN V , DELPINO M V . Henipaviruses: an expanding global public health concern?[J]. Geroscience, 2022, 44 (5): 2447- 2459. |
51 | MADERA S , KISTLER A , RANAⅣOSON H C , et al. Discovery and genomic characterization of a novel henipavirus, angavokely virus, from fruit bats in madagascar[J]. J Virol, 2022, 96 (18): e0092122. |
[1] | Dongliang LI, Guanmin ZHENG, Shuai LI, Hongsen ZHU, Chao WU. Differential Expression of Transcriptome in Jejunal of Piglets Infected with Porcine Epidemic Diarrhea Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2652-2661. |
[2] | GAO Yuanji, LIU Chang, CHEN Miao, CHEN Songbiao, ZHANG Junfeng, LI Jing, JIA Yanyan, LIAO Chengshui, GUO Rongxian, DING Ke, YU Zuhua, SHANG Ke. Structure, Secretory Characteristics, and Pathogenic Mechanism of Bacterial Outer Membrane Vesicles [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 971-983. |
[3] | WANG Ruiling, WANG Xueyan, WANG Feifei, KONG Weiyi, MAO Yongxia, LIU Xin, DING Hui, XU Lihua, GUO Yansheng. Study on the Changes of Blood Oxidized Lipid Group in Postpartum Dairy Cows with Acute Endometritis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 373-387. |
[4] | HE Chenpeng, LI Baizhen, LIU Jie, HE Jianhua, WU Shusong. Research Progress on Main Causes and Mechanism of Sow Reproductive Disorder Syndrome [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3139-3151. |
[5] | YAN Rui, REN Yi, CHEN Qiuhui, LI Zhengzhi, YANG Jinghan, ZHAO Tianrui, LEI Yifei, HU Changmin. Feline Lower Urinary Tract Syndrome [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2470-2478. |
[6] | ZHANG Mi, TU Wenjun, ZHANG Qi, JIANG Sha. The Influencing Factors and the Multiple-hit Pathogenesis of Chicken Fatty Liver Hemorrhagic Syndrome [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2453-2469. |
[7] | ZHANG Yiling, KAN Zifei, NIU Zheng, YU Qiuhan, RAN Ling, ZHANG Shujuan, ZOU Hong, XU Shasha, ZHANG Jingyi, SONG Zhenhui. Preparation and Application of Precision-Cut Tissue Slices [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2): 339-348. |
[8] | YAN Yayao, GU Min, LIU Xiufan. Advance in the Influence of Amino Acid Variation in HA Protein on the Biological Properties of H7N9 Subtype Influenza Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(8): 2093-2106. |
[9] | XU Chengzhi, WU Yunpu, JIA Yunhui, YANG Shiman, HE Likun, CHEN Yan, ZHOU Chenyang, YANG Huanliang, QIAO Chuanling, CHEN Hualan. Phylogenetic Analysis and Pathogenesis in Mice of a Novel Reassortant H1N2 Subtype Swine Influenza Virus [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2019, 50(4): 802-810. |
[10] | HU Gu-yue, ZHAO Gang, CHEN Ying-yu, GUO Ai-zhen. Progress on Secretory Proteins of Mycoplasma [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2017, 48(9): 1572-1578. |
[11] | SONG Yi-ming,DOU Yong-xi,ZHANG Zhi-dong. Research Progress of Equine Rhinitis Viruses [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2015, 46(3): 357-361. |
[12] | XU Lei,ZENG Liang-ming,WANG Yu-ling,CHEN Xian-jin,LIN Bo-quan,LIN Gong-yang,FU Guang-hua,SHI Shao-hua,CHENG Long-fei,HUANG Yu,ZHANG Yuan-kui. Investigation of Bovine Viral Diarrhea Virus (BVDV) from Swine in Fujian Province [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2014, 45(12): 2006-2012. |
[13] | ZHANG Nian-zhang, CHEN Jia, WANG Meng, ZHU Xing-quan,HUANG Si-yang. Research Advances in Calcium-dependent Protein Kinases of Apicomplexa [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2013, 44(1): 1-6. |
[14] | WU Li-fu; ZHOU Jian-guo. Experimental Studies on Pathogenesis of Endotoxin-induced Acute Renal Failure [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2005, 36(3): 283-287. |
[15] | ZHANG Zhi;ZHUANG Guo-qing;SUN Shu-hong;CUI Zhi-zhong. Pathogenesis of Co-infection on Broiler Chicken by Marek’s Disease Virus and Reticuloendotheliosis Virus [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2005, 36(1): 62-65. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||