Acta Veterinaria et Zootechnica Sinica ›› 2022, Vol. 53 ›› Issue (1): 272-281.doi: 10.11843/j.issn.0366-6964.2022.01.027
• BASIC VETERINARY MEDICINE • Previous Articles Next Articles
ZHU Jingjing, DAI Zhenglie, WANG Han, LI Xiangchen, ZHAO Ayong, ZHOU Xiaolong*, YANG Songbai*
Received:
2021-04-19
Online:
2022-01-23
Published:
2022-01-26
CLC Number:
ZHU Jingjing, DAI Zhenglie, WANG Han, LI Xiangchen, ZHAO Ayong, ZHOU Xiaolong, YANG Songbai. Analysis of Differential Expression Profile of LncRNA in PK15 Cells Infected with Japanese Encephalitis Virus[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(1): 272-281.
[1] | HEFFELFINGER J D, LI X, BATMUNKH N, et al. Japanese encephalitis surveillance and immunization-Asia and Western Pacific Regions, 2016[J]. MMWR Morb Mortal Wkly Rep, 2017, 66(22):579-583. |
[2] | NANISHI E, HOSHINA T, SANEFUJI M, et al. A nationwide survey of pediatric-onset Japanese Encephalitis in Japan[J]. Clin Infect Dis, 2019, 68(12):2099-2104. |
[3] | OLIVEIRA A R S, COHNSTAEDT L W, NORONHA L E, et al. Perspectives regarding the risk of introduction of the japanese encephalitis virus (JEV) in the United States[J]. Front Vet Sci, 2020, 7:48. |
[4] | TAKASHIMA I, WATANABE T, OUCHI N, et al. Ecological studies of Japanese encephalitis virus in Hokkaido: interepidemic outbreaks of swine abortion and evidence for the virus to overwinter locally[J]. Am J Trop Med Hyg, 1988, 38(2):420-427. |
[5] | BURNS K F. Congenital Japanese B encephalitis infection of swine[J]. Proc Soc Exp Biol Med, 1950, 75(2):621-625. |
[6] | LIU K, LIAO X W, ZHOU B, et al. Porcine alpha interferon inhibit Japanese encephalitis virus replication by different ISGs in vitro[J]. Res Vet Sci, 2013, 95(3):950-956. |
[7] | YANG S B, HE M H, LIU X D, et al. Japanese encephalitis virus infects porcine kidney epithelial PK15 cells via clathrin- and cholesterol-dependent endocytosis[J]. Virol J, 2013, 10(1):258. |
[8] | CAI Y H, ZHU L, ZHOU Y C, et al. Identification and analysis of differentially-expressed microRNAs in Japanese encephalitis virus-infected PK-15 cells with deep sequencing[J]. Int J Mol Sci, 2015, 16(1):2204-2219. |
[9] | YANG S B, PEI Y, LI X Y, et al. miR-124 attenuates Japanese encephalitis virus replication by targeting DNM2[J]. Virol J, 2016, 13(1):105. |
[10] | LAMSISI M, ENNAJI M M. Involvement and roles of long noncoding RNAs in the molecular mechanisms of emerging and reemerging viral infections[J]. Emerg Reemerg Viral Path, 2020, 2:71-92. |
[11] | DOOLITTLE W F. Is junk DNA bunk?A critique of ENCODE[J]. Proc Natl Acad Sci U S A, 2013, 110(14):5294-5300. |
[12] | FATICA A, BOZZONI I. Long non-coding RNAs:new players in cell differentiation and development[J]. Nat Rev Genet, 2014, 15(1):7-21. |
[13] | HU W Q, ALVAREZ-DOMINGUEZ J R, LODISH H F. Regulation of mammalian cell differentiation by long non-coding RNAs[J]. Embo Rep, 2012, 13(11):971-983. |
[14] | ZHEN Y R, WANG F Q, LIANG W, et al. Identification of differentially expressed non-coding RNA in porcine alveolar macrophages from Tongcheng and Large white pigs responded to PRRSV[J]. Sci Rep, 2018, 8(1):15621. |
[15] | JIN Y, ZHANG K L, HUANG W X, et al. Identification of functional lncRNAs in pseudorabies virus type Ⅱ infected cells[J]. Vet Microbiol, 2020, 242:108564. |
[16] | CHEN J N, ZHANG C Y, ZHANG N, et al. Porcine endemic diarrhea virus infection regulates long noncoding RNA expression[J]. Virology, 2019, 527:89-97. |
[17] | LIN H Y, JIANG M H, LIU L, et al. The long noncoding RNA Lnczc3 h7a promotes a TRIM25-mediated RIG-I antiviral innate immune response[J]. Nat Immunol, 2019, 20(7):812-823. |
[18] | NISHITSUJI H, UJINO S, YOSHIO S, et al. Long noncoding RNA #32 contributes to antiviral responses by controlling interferon-stimulated gene expression[J]. Proc Natl Acad Sci U S A, 2016, 113(37):10388-10393. |
[19] | ZHAO L N, XIA M, WANG K Y, et al. A long non-coding RNA IVRPIE promotes host antiviral immune responses through regulating interferon β1 and ISG expression[J]. Front Microbiol, 2020, 11:260. |
[20] | LI Y C, ZHANG H, ZHU B B, et al. Microarray analysis identifies the potential role of long Non-Coding RNA in regulating neuroinflammation during Japanese encephalitis virus infection[J]. Front Immunol, 2017, 8:1237. |
[21] | 杜加茹, 陈浩南, 王方雨, 等. 乙型脑炎病毒感染小鼠原代神经元细胞的miRNA表达谱差异分析[J]. 畜牧兽医学报, 2020, 51(9): 2319-2323.DU J R, CHEN H N, WANG F Y, et al. analysis of the miRNA expression profiles in the primary neurons of mice infected with Japanese encephalitis virus[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(9): 2319-2323. (in Chinese) |
[22] | WANG P. The opening of Pandora’s Box: an emerging role of long noncoding RNA in viral infections[J]. Front Immunol, 2018, 9:3138. |
[23] | 杜程涛, 汪 涵, 杨松柏, 等. lncRNA在乙脑病毒感染PK15细胞过程中的作用研究[J]. 中国畜牧兽医, 2019, 46(7):2045-2052.DU C T, WANG H, YANG S B, et al. Study on the role of lncRNA in the process of Japanese encephalitis virus infecting PK15 cells[J]. China Animal Husbandry & Veterinary Medicine, 2019, 46(7):2045-2052. (in Chinese) |
[24] | ZHOU X L, YUAN Q Y, ZHANG C, et al. Inhibition of Japanese encephalitis virus proliferation by long non-coding RNA SUSAJ1 in PK-15 cells[J]. Virol J, 2021, 18(1):29. |
[25] | MA X L, ZHAO X M, WANG K L, et al. Identification and analysis of long non-coding RNAs that are involved in inflammatory process in response to transmissible gastroenteritis virus infection[J]. BMC Genomics, 2019, 20(1):806. |
[26] | MAJEWSKA M, LIPKA A, PAUKSZTO L, et al. Preliminary RNA-Seq analysis of long non-coding RNAs expressed in human term placenta[J]. Int J Mol Sci, 2018, 19(7):1894. |
[27] | SHI G L, CHEN L, CHEN G T, et al. Identification and functional prediction of long intergenic Non-coding RNAs related to subcutaneous adipose development in pigs[J]. Front Genet, 2019, 10:160. |
[28] | LIU W W, DING C. Roles of LncRNAs in viral infections[J]. Front Cell Infect Microbiol, 2017, 7:205. |
[29] | KAMBARA H, NIAZI F, KOSTADINOVA L, et al. Negative regulation of the interferon response by an interferon-induced long non-coding RNA[J]. Nucleic Acids Res, 2014, 42(16):10668-10680. |
[30] | OUYANG J, ZHU X M, CHEN Y H, et al. NRAV, a long noncoding RNA, modulates antiviral responses through suppression of interferon-stimulated gene transcription[J]. Cell Host Microbe, 2014, 16(5):616-626. |
[31] | XIE Q Y, CHEN S W, TIAN R Y, et al. Long noncoding RNA ITPRIP-1 positively regulates the innate immune response through promotion of oligomerization and activation of MDA5[J]. J Virol, 2018, 92(17):e00507-18. |
[32] | ATIANAND M K, HU W Q, SATPATHY A T, et al. A long noncoding RNA lincRNA-EPS Acts as a transcriptional brake to restrain inflammation[J]. Cell, 2016, 165(7):1672-1685. |
[33] | FAN J J, CHENG M, CHI X J, et al. A human long non-coding RNA LncATV promotes virus replication through restricting RIG-I-mediated innate immunity[J]. Front Immunol, 2019, 10:1711. |
[34] | ARPAIA N, BARTON G M. Toll-like receptors:key players in antiviral immunity[J]. Curr Opin Virol, 2011, 1(6):447-454. |
[35] | HAN Y W, CHOI J Y, UYANGAA E, et al. Distinct dictation of Japanese encephalitis virus-induced neuroinflammation and lethality via triggering TLR3 and TLR4 signal pathways[J]. PLoS Pathog, 2014, 10(9):e1004319. |
[36] | JIANG R, YE J, ZHU B B, et al. Roles of TLR3 and RIG-I in mediating the inflammatory response in mouse microglia following Japanese encephalitis virus infection[J]. J Immunol Res, 2014, 2014:787023. |
[37] | NAZMI A, MUKHERJEE S, KUNDU K, et al. TLR7 is a key regulator of innate immunity against Japanese encephalitis virus infection[J]. Neurobiol Dis, 2014, 69:235-247. |
[38] | TAO X W, ZENG L K, WANG H Z, et al. LncRNA MEG3 ameliorates respiratory syncytial virus infection by suppressing TLR4 signaling[J]. Mol Med Rep, 2018, 17(3):4138-4144. |
[1] | ZHOU Yang, WU Weizi, CAO Weisheng, WANG Fuguang, XU Xiuqiong, ZHONG Wenxia, WU Liyang, YE Jian, LU Shousheng. A Whole Genome Sequencing Method for African Swine Fever Virus based on Nanopore Sequencing Technology was Established [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2080-2089. |
[2] | HUANG Yuanyuan, WANG Jia, CHEN Jiayu, GAN Yuan, YUAN Ting, FENG Zhixin, SHAO Guoqing, WANG Xianwei, XIONG Qiyan. Isolation and Culture of Swine Peritoneal Mesothelial Cells and Its Preliminary Application [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1249-1256. |
[3] | LIU Yuanjie, XU Lu, ZHU Yuanyuan, XU Yuan, ZHANG Qianyi, LI Cui, LI Ming, XIA Yingju, WANG Qin, LIU Yebing, ZHAO Qizu, ZOU Xingqi. The Construction and Rescue of Epitope Mutant Strain of Classical Swine Fever Virus C Strain [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 698-705. |
[4] | YAN Wenqian, HOU Jing, YANG Jinke, HAO Yu, YANG Xing, SHI Xijuan, ZHANG Dajun, BIE Xintian, CHEN Guohui, CHEN Lingling, HE Lu, ZHAO Meiyu, ZHAO Siyue, ZHENG Haixue, ZHANG Keshan. Monoclonal Antibody against D1133 L Protein of African Swine Fever Virus Inhibits Its Replication [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 854-859. |
[5] | BAI Yun, XIE Qingyun, OUYANG Wei, GAN Yuan, YUAN Ting, ZHAO Dongming, BU Zhigao, SHAO Guoqing, FENG Zhixin. Establishment of a Serological Method for Early Detection of African Swine Fever Virus Infection Based on Mucosal sIgA Antibody [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 300-310. |
[6] | LIU Chuanxia, WANG Xiao, LI Xuewen, BAO Miaofei, LI Tingting, CHEN Xin, WENG Changjiang, ZHENG Jun. Preparation of Monoclonal Antibody of African Swine Fever Virus pE120R [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 388-394. |
[7] | FENG Yongzhi, GONG Ting, WU Dongdong, GAO Qi, ZHENG Xiaoyu, ZHANG Guihong, SUN Yankuo. Analysis of Factors Affecting the Infectivity of African Swine Fever Virus on Cultured Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3406-3414. |
[8] | LIU Taoxue, SU Bingqian, QI Yanli, GUO Jiangtao, LIU Zhonghu, CHU Beibei, WANG Jiang, ZENG Lei. Preparation of the Monoclonal Antibody against the African Swine Fever Virus p30 Protein and Identification of the Antigenic Epitope [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3415-3423. |
[9] | WU Yicheng, RAN Tao, ZHOU Chuanshe, TAN Zhiliang. Evaluation of the Viral Community Composition in Goat Rumen Fluid, Based on Metagenomic Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2932-2941. |
[10] | DING Xiaoyan, HE Jiuxiang, ZHOU Xiaoyang, ZHOU Yuxin, LI Jintao. Preliminary Identification of Host Regulatory Genes and Virulence Genes during African Swine Fever Virus Infection [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2964-2971. |
[11] | CAO Liyan, KONG Xiangyu, LI Xiangtong, SUO Xuepeng, DUAN Yueyue, YUAN Cong, SHI Lei, ZHANG Yu, MA Guoxiang, ZHENG Haixue, WANG Qi. Preparation and Sequence Analysis of Monoclonal Antibody against the Nucleocapsid Protein of Porcine Acute Diarrhea Syndrome Coronavirus [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2487-2497. |
[12] | WANG Ying, ZHU Jiahong, ZHAO Jiakai, JI Pinpin, CHEN Xu, ZHANG Lu, LIU Baoyuan, SUN Yani, ZHAO Qin. Screening and Identification of Nanobodies against NP419L Protein of African Swine Fever Virus and Its Preliminary Application of Antibody Detection [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2509-2520. |
[13] | WANG Jingyu, FAN Shuqi, LI Cheng, YIN Ning, ZHUANG Binxian, LIU Huiming, WEN Yongxian. Spatio-temporal Characteristics and Influencing Factors of Swine Erysipelas Epidemic in China [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2528-2542. |
[14] | LIU Wenhao, ZHU Yance, ZHANG Dongxuan, WANG Zhihao, ZHANG Chao. Construction of PK 15 Cell Line Stably Expressing African Swine Fever Virus E165R Protein [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2662-2666. |
[15] | WANG Guochao, ZHAO Yaru, ZHANG Zhonghui, ZHANG Yulong, BAI Ge, GENG Shuxian, FAN Jie, YANG Jifei, GUAN Guiquan, YIN Hong, LUO Jianxun, NIU Qingli. Bioinformatics Analysis of RNA Polymerase Subunit D205R Gene of African Swine Fever Virus and Polyclonal Antibody Preparation [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 2042-2049. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||