Acta Veterinaria et Zootechnica Sinica ›› 2023, Vol. 54 ›› Issue (7): 2743-2750.doi: 10.11843/j.issn.0366-6964.2023.07.008
• REVIEW • Previous Articles Next Articles
CHEN Aolei, HUANG Deru, AN Yafei, LI Shoujun*
Received:
2022-11-28
Online:
2023-07-23
Published:
2023-07-21
CLC Number:
CHEN Aolei, HUANG Deru, AN Yafei, LI Shoujun. Animal Intestinal Organoids Culture[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2743-2750.
[1] | MENESES A M C, SCHNEEBERGER K, KRUITWAGEN H S, et al. Intestinal organoids-current and future applications[J]. Vet Sci, 2016, 3(4):31. |
[2] | BARKER N, VAN ES J H, KUIPERS J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5[J]. Nature, 2007, 449(7165):1003-1007. |
[3] | SATO T, VRIES R G, SNIPPERT H J, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244):262-265. |
[4] | CLEVERS H. Modeling development and disease with organoids[J]. Cell, 2016, 165(7):1586-1597. |
[5] | SATO T, CLEVERS H. Growing self-organizing mini-guts from a single intestinal stem cell:mechanism and applications[J]. Science, 2013, 340(6137):1190-1194. |
[6] | ZHANG Y J, HUANG S B, ZHONG W G, et al. 3D organoids derived from the small intestine:an emerging tool for drug transport research[J]. Acta Pharm Sin B, 2021, 11(7):1697-1707. |
[7] | MADELINE A L, JUERGEN A K. Organogenesis in a dish:modeling development and disease using organoid technologies[J]. Science, 2014, 345(6194):1247125. |
[8] | YIN Y B, DE JONGE H R, WU X, et al. Mini-gut:a promising model for drug development[J]. Drug Discov Today, 2019, 24(9):1784-1794. |
[9] | DATE S, SATO T. Mini-gut organoids:reconstitution of the stem cell niche[J]. Annu Rev Cell Dev Biol, 2015, 31:269-289. |
[10] | CLEVERS H C. Organoids:avatars for personalized medicine[J]. Keio J Med, 2019, 68(4):95. |
[11] | WANG X, YAMAMOTO Y, WILSON L H, et al. Cloning and variation of ground state intestinal stem cells[J]. Nature, 2015, 522(7555):173-178. |
[12] | LI L, FU F, GUO S S, et al. Porcine intestinal enteroids:a new model for studying enteric coronavirus porcine epidemic diarrhea virus infection and the host innate response[J]. J Virol, 2019, 93(5):e01682-18. |
[13] | LI X G, ZHU M, CHEN M X, et al. Acute exposure to deoxynivalenol inhibits porcine enteroid activity via suppression of the Wnt/β-catenin pathway[J]. Toxicol Lett, 2019, 305:19-31. |
[14] | WANG Z, OCADIZ-RUIZ R, SUNDARESAN S, et al. Isolation of enteric glial cells from the submucosa and lamina propria of the adult mouse[J]. J Vis Exp, 2018(138):57629. |
[15] | BAGHDADI M B, KIM T H. Analysis of mouse intestinal organoid culture with conditioned media isolated from mucosal enteric glial cells[J]. STAR Protoc, 2022, 3(2):101351. |
[16] | SATO T, STANGE D E, FERRANTE M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium[J]. Gastroenterology, 2011, 141(5):1762-1772. |
[17] | YILMAZ Ö H, KATAJISTO P, LAMMING D W, et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake[J]. Nature, 2012, 486(7404):490-495. |
[18] | SATO T, VAN ES J H, SNIPPERT H J, et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts[J]. Nature, 2011, 469(7330):415-418. |
[19] | GONZALEZ-CORDERO A, KRUCZEK K, NAEEM A, et al. Recapitulation of human retinal development from human pluripotent stem cells generates transplantable populations of cone photoreceptors[J]. Stem Cell Rep, 2017, 9(3):820-837. |
[20] | THORNE C A, CHEN I W, SANMAN L E, et al. Enteroid monolayers reveal an autonomous WNT and BMP circuit controlling intestinal epithelial growth and organization[J]. Dev Cell, 2018, 44(5):624-633. e4. |
[21] | VAN DER HEE B, LOONEN L M P, TAVERNE N, et al. Optimized procedures for generating an enhanced, near physiological 2D culture system from porcine intestinal organoids[J]. Stem Cell Res, 2018, 28:165-171. |
[22] | LI Y, YANG N, CHEN J N, et al. Next-generation porcine intestinal organoids:an apical-out organoid model for swine enteric virus infection and immune response investigations[J]. J Virol, 2020, 94(21):e01006-20. |
[23] | POWELL R H, BEHNKE M S. WRN conditioned media is sufficient for in vitro propagation of intestinal organoids from large farm and small companion animals[J]. Biol Open, 2017, 6(5):698-705. |
[24] | KRAMER N, PRATSCHER B, MENESES A M C, et al. Generation of differentiating and long-living intestinal organoids reflecting the cellular diversity of canine intestine[J]. Cells, 2020, 9(4):822. |
[25] | FUJII M, MATANO M, TOSHIMITSU K, et al. Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition[J]. Cell Stem Cell, 2018, 23(6):787-793. e6. |
[26] | CHANDRA L, BORCHERDING D C, KINGSBURY D, et al. Derivation of adult canine intestinal organoids for translational research in gastroenterology[J]. BMC Biol, 2019, 17(1):33. |
[27] | SAXENA K, BLUTT S E, ETTAYEBI K, et al. Human intestinal enteroids:a new model to study human rotavirus infection, host restriction, and pathophysiology[J]. J Virol, 2016, 90(1):43-56. |
MAHE M M, AIHARA E, SCHUMACHER M A, et al. Establishment of gastrointestinal epithelial organoids[J]. Curr Protoc Mouse Biol, 2013, 3(4):217-240. | |
[28] | GELBERG H B. Comparative anatomy, physiology, and mechanisms of disease production of the esophagus, stomach, and small intestine[J]. Toxicol Pathol, 2014, 42(1):54-66. |
[29] | PIERZCHALSKA M, GRABACKA M, MICHALIK M, et al. Prostaglandin E2 supports growth of chicken embryo intestinal organoids in Matrigel matrix[J]. BioTechniques, 2012, 52(5):307-315. |
[30] | ZHAO D, FARNELL M B, KOGUT M H, et al. From crypts to enteroids:establishment and characterization of avian intestinal organoids[J]. Poult Sci, 2022, 101(3):101642. |
[31] | WANG Y L, HOU Q H, WU Y Q, et al. Methionine deficiency and its hydroxy analogue influence chicken intestinal 3-dimensional organoid development[J]. Anim Nutr, 2022, 8(1):38-51. |
[32] | LI J, LI J Jr, ZHANG S Y, et al. Culture and characterization of chicken small intestinal crypts[J]. Poult Sci, 2018, 97(5):1536-1543. |
[33] | PANEK M, GRABACKA M, PIERZCHALSKA M. The formation of intestinal organoids in a hanging drop culture[J]. Cytotechnology, 2018, 70(3):1085-1095. |
[34] | SUTTON K M, ORR B, HOPE J, et al. Establishment of bovine 3D enteroid-derived 2D monolayers[J]. Vet Res, 2022, 53(1):15. |
[35] | DERRICOTT H, LUU L, FONG W Y, et al. Developing a 3D intestinal epithelium model for livestock species[J]. Cell Tissue Res, 2019, 375(2):409-424. |
[36] | STEWART A S, FREUND J M, GONZALEZ L M. Advanced three-dimensional culture of equine intestinal epithelial stem cells[J]. Equine Vet J, 2018, 50(2):241-248. |
[37] | MUSSARD E, POUZET C, HELIES V, et al. Culture of rabbit caecum organoids by reconstituting the intestinal stem cell niche in vitro with pharmacological inhibitors or L-WRN conditioned medium[J]. Stem Cell Res, 2020, 48:101980. |
[38] | BEAUMONT M, BLANC F, CHERBUY C, et al. Intestinal organoids in farm animals[J]. Vet Res, 2021, 52(1):33. |
[39] | GONG S Y, ZHENG J C, ZHANG J J, et al. Taxifolin ameliorates lipopolysaccharide-induced intestinal epithelial barrier dysfunction via attenuating NF-kappa B/MLCK pathway in a Caco-2 cell monolayer model[J]. Food Res Int, 2022, 158:111502. |
[40] | LIU X H, LI X R, GAO X M, et al. Comparison of the permeability between conjugated estrogens and atenolol in rat in situ single-pass intestinal perfusions model and in Caco-2 cell monolayers[J]. J Drug Delivery Sci Technol, 2022, 68:102786. |
[41] | SUN D X, YU L X, HUSSAIN M A, et al. In vitro testing of drug absorption for drug ‘developability’ assessment:forming an interface between in vitro preclinical data and clinical outcome[J]. Curr Opin Drug Discov Devel, 2004, 7(1):75-85. |
[42] | MOCHEL J P, JERGENS A E, KINGSBURY D, et al. Intestinal stem cells to advance drug development, precision, and regenerative medicine:a paradigm shift in translational research[J]. AAPS J, 2018, 20(1):17. |
[43] | DOU Y T, PIZARRO T, ZHOU L. Organoids as a model system for studying notch signaling in intestinal epithelial homeostasis and intestinal cancer[J]. Am J Pathol, 2022, 192(10):1347-1357. |
[44] | TAKAHASHI Y, NOGUCHI M, INOUE Y, et al. Organoid-derived intestinal epithelial cells are a suitable model for preclinical toxicology and pharmacokinetic studies[J]. iScience, 2022, 25(7):104542. |
[45] | MARTINEZ-SILGADO A, YOUSEF YENGEJ F A, PUSCHHOF J, et al. Differentiation and CRISPR-Cas9-mediated genetic engineering of human intestinal organoids[J]. STAR Protoc, 2022, 3(3):101639. |
[46] | LI M, IZPISUA B J. Organoids-preclinical models of human disease[J]. N Engl J Med, 2019, 380(6):569-579. |
[47] | SEEGER B. Farm animal-derived models of the intestinal epithelium:recent advances and future applications of intestinal organoids[J]. Altern Lab Anim, 2020, 48(5-6):215-233. |
[48] | KRUITWAGEN H S, OOSTERHOFF L A, VERNOOIJ I G W H, et al. Long-term adult feline liver organoid cultures for disease modeling of hepatic steatosis[J]. Stem Cell Rep, 2017, 8(4):822-830. |
[49] | SUZUKI K, KUWABARA K, TAKAHASHI J, et al. 598-Single-cell level analysis of organoids derived from CD patients reveals disease-status related modifications of small intestinal stem cells[J]. Gastroenterology, 2018, 154(S6):S-127. |
[50] | LIU Y, CHEN Y G. 2D- and 3D-based intestinal stem cell cultures for personalized medicine[J]. Cells, 2018, 7(12):225. |
[51] | GJOREVSKI N, SACHS N, MANFRIN A, et al. Designer matrices for intestinal stem cell and organoid culture[J]. Nature, 2016, 539(7630):560-564. |
[52] | KIM S, MIN S, CHOI Y S, et al. Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids[J]. Nat Commun, 2022, 13(1):1692. |
[53] | MOUSSEAU Y, MOLLARD S, QIU H, et al. In vitro 3D angiogenesis assay in egg white matrix:comparison to Matrigel, compatibility to various species, and suitability for drug testing[J]. Lab Invest, 2014, 94(3):340-349. |
[54] | KIM S, CHOI Y S, LEE J S, et al. Intestinal extracellular matrix hydrogels to generate intestinal organoids for translational applications[J]. J Ind Eng Chem, 2022, 107:155-164. |
[55] | RAHMAN S, GHIBOUB M, DONKERS J M, et al. The progress of intestinal epithelial models from cell lines to gut-on-chip[J]. Int J Mol Sci, 2021, 22(24):13472. |
[56] | ZHANG J, TAVAKOLI H, MA L, et al. Immunotherapy discovery on tumor organoid-on-a-chip platforms that recapitulate the tumor microenvironment[J]. Adv Drug Deliv Rev, 2022, 187:114365. |
[57] | PETERSON L W, ARTIS D. Intestinal epithelial cells:regulators of barrier function and immune homeostasis[J]. Nat Rev Immunol, 2014, 14(3):141-153. |
[58] | WILSON S S, TOCCHI A, HOLLY M K, et al. A small intestinal organoid model of non-invasive enteric pathogen-epithelial cell interactions[J]. Mucosal Immunol, 2015, 8(2):352-361. |
[59] | YANG N, ZHANG Y H, FU Y G, et al. Transmissible gastroenteritis virus infection promotes the self-renewal of porcine intestinal stem cells via Wnt/β-catenin pathway[J]. J Virol, 2022, 96(18):e00962-22. |
[60] | NASH T J, MORRIS K M, MABBOTT N A, et al. Inside-out chicken enteroids with leukocyte component as a model to study host-pathogen interactions[J]. Commun Biol, 2021, 4(1):377. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||