Acta Veterinaria et Zootechnica Sinica ›› 2023, Vol. 54 ›› Issue (5): 1834-1844.doi: 10.11843/j.issn.0366-6964.2023.05.007
• REVIEW • Previous Articles Next Articles
SUN Xiaojing, ZHANG Lei, TIAN Tian, MA Xi, YAO Jia, WANG Yang*
Received:
2022-07-21
Online:
2023-05-23
Published:
2023-05-20
CLC Number:
SUN Xiaojing, ZHANG Lei, TIAN Tian, MA Xi, YAO Jia, WANG Yang. Unravelling Toxoplasma Treatment: Conventional Drugs toward Nanomedicine[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1834-1844.
[1] | MONTOYA J G, LIESENFELD O. Toxoplasmosis[J]. Lancet, 2004, 363(9425):1965-1976. |
[2] | SAADATNIA G, GOLKAR M. A review on human toxoplasmosis[J]. Scand J Infect Dis, 2012, 44(11):805-814. |
[3] | 沈继龙, 余莉. 我国弓形虫病流行概况及防治基础研究进展[J]. 中国血吸虫病防治杂志, 2019, 31(1):71-76.SHEN J L, YU L. Prevalence and fundamental researches of prevention and treatment of toxoplasmosis in China:an overview[J]. Chinese Journal of Schistosomiasis Control, 2019, 31(1):71-76. (in Chinese) |
[4] | WANG S, ZHOU Y H, NIU J Y, et al. Seroprevalence of Toxoplasma gondii infection in domestic cats in central China[J]. Parasite, 2017, 24:10. |
[5] | 侯永恒, 吕芳丽. 弓形虫感染与宿主细胞自噬的相互作用[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(4):537-541, 547.HOU Y H, LV F L. The interplay between Toxoplasma gondii infection and autophagy in host cells[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2021, 39(4):537-541, 547. (in Chinese) |
[6] | DECEMBRINO N, COMELLI A, GENCO F, et al. Toxoplasmosis disease in paediatric hematopoietic stem cell transplantation:do not forget it still exists[J]. Bone Marrow Transplant, 2017, 52(9):1326-1329. |
[7] | HAMPTON M M. Congenital toxoplasmosis:a review[J]. Neonatal Netw, 2015, 34(5):274-278. |
[8] | POSTOLACHE T T, COOK T B. Is latent infection with Toxoplasma gondii a risk factor for suicidal behavior?[J]. Exp Rev Anti Infect Ther, 2013, 11(4):339-342. |
[9] | ZHANG Y H, CHEN H, CHEN Y, et al. Activated microglia contribute to neuronal apoptosis in Toxoplasmic encephalitis[J]. Parasit Vectors, 2014, 7:372. |
[10] | 姚娜, 龚静芝, 范益敏, 等. 弓形虫病治疗药物的研究进展[J]. 中国畜牧兽医, 2020, 47(4):1250-1257.YAO N, GONG J Z, FAN Y M, et al. Research progress on drugs for the treatment of toxoplasmosis[J]. China Animal Husbandry & Veterinary Medicine, 2020, 47(4):1250-1257. (in Chinese) |
[11] | BAGGISH A L, HILL D R. Antiparasitic agent atovaquone[J]. Antimicrob Agents Chemother, 2002, 46(5):1163-1173. |
[12] | PAQUET C, YUDIN M H, Society of Obstetricians and Gynaecologists of Canada. Toxoplasmosis in pregnancy:prevention, screening, and treatment[J]. J Obstet Gynaecol Can, 2013, 35(1):78-79. |
[13] | OMAR M, ABAZA B E, MOUSA E, et al. Effect of spiramycin versus aminoguanidine and their combined use in experimental toxoplasmosis[J]. J Parasit Dis, 2021, 45(4):1014-1025. |
[14] | DUNAY I R, GAJUREL K, DHAKAL R, et al. Treatment of toxoplasmosis:historical perspective, animal models, and current clinical practice[J]. Clin Microbiol Rev, 2018, 31(4):e00057-17. |
[15] | JORGE R, COELHO I N, SILVA-CUNHA A, et al. Use of a slow-release intravitreal clindamycin implant for the management of ocular toxoplasmosis[J]. Am J Ophthalmol Case Rep, 2021, 22:101093. |
[16] | CHANG H R. The potential role of azithromycin in the treatment of prophylaxis of toxoplasmosis[J]. Int J STD AIDS, 1996, 7 Suppl 1:18-22. |
[17] | SCHLOSSBERG D. Azithromycin and clarithromycin[J]. Med Clin North Am, 1995, 79(4):803-815. |
[18] | SAITO H, MURATA Y, NONAKA M, et al. Screening of a library of traditional Chinese medicines to identify compounds and extracts which inhibit Toxoplasma gondii growth[J]. J Vet Med Sci, 2020, 82(2):184-187. |
[19] | 石琦,郝炳华,周玉玲,等.小鼠淋巴细胞体外抗弓形虫作用的实验研究[J].细胞与分子免疫学杂志,2003,19(5):493-495.SHI Q, HAO B H, ZHOU Y L, et al. Experimental study on the in vitro resistance to Toxoplasma gondii by murine lymphocyte[J]. Chinese Journal of Cellular and Molecular Immunology, 2003, 19(5):493-495. (in Chinese) |
[20] | D'ANGELO J G, BORDÓN C, POSNER G H, et al. Artemisinin derivatives inhibit Toxoplasma gondii in vitro at multiple steps in the lytic cycle[J]. J Antimicrob Chemother, 2009, 63(1):146-150. |
[21] | CHEN Q W, DONG K, QIN H X, et al. Direct and indirect inhibition effects of resveratrol against Toxoplasma gondii tachyzoites in vitro[J]. Antimicrob Agents Chemother, 2019, 63(3):e01233-18. |
[22] | 杨小迪,孙希萌,王旗,等. 金丝桃素体外抗刚地弓形虫速殖子效果的观察[J]. 中国寄生虫学与寄生虫病杂志, 2016, 34(3):203-207.YANG X D, SUN X M, WANG Q, et al. In vitro effect of hypericin against Toxoplasma gondii tachyzoites[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2016, 34(3):203-207. (in Chinese) |
[23] | 赵雅文, 郑萌, 李涛, 等. 白藜芦醇对弓形虫感染小鼠的治疗效果及毒副作用研究[J]. 热带医学杂志, 2020, 20(3):350-353.ZHAO Y W, ZHENG M, LI T, et al. Study on the therapeutic effect and side effects of resveratrol on acute Toxoplasma gondii infected mice[J]. Journal of Tropical Medicine, 2020, 20(3):350-353. (in Chinese) |
[24] | SASAI M, PRADIPTA A, YAMAMOTO M. Host immune responses to Toxoplasma gondii[J]. Int Immunol, 2018, 30(3):113-119. |
[25] | SHARIF M, SARVI S, PAGHEH A S, et al. The efficacy of herbal medicines against Toxoplasma gondii during the last 3 decades:a systematic review[J]. Can J Physiol Pharmacol, 2016, 94(12):1237-1248. |
[26] | ABDULLAHI S A, UNYAH N Z, NORDIN N, et al. Phytochemicals and potential therapeutic targets on Toxoplasma gondii parasite[J]. Mini Rev Med Chem, 2020, 20(9):739-753. |
[27] | 于朝云, 张保德, 宁俊雅, 等. 中草药抗弓形虫作用机制的研究进展[J]. 中国血吸虫病防治杂志, 2015, 27(5):555-557, 559.YU C Y, ZHANG B D, NING J Y, et al. Advances in researches on mechanism of anti-Toxoplasma Chinese herbal medicine[J]. Chinese Journal of Schistosomiasis Control, 2015, 27(5):555-557, 559. (in Chinese) |
[28] | GOO Y K, YAMAGISHI J, UENO A, et al. Characterization of Toxoplasma gondii glyoxalase 1 and evaluation of inhibitory effects of curcumin on the enzyme and parasite cultures[J]. Parasit Vectors, 2015, 8:654. |
[29] | 黄珮珺, 李芸茜, 戎国栋, 等. 黄芪对急性弓形虫感染小鼠的血清IFN-γ及IL-18的影响[J]. 临床检验杂志, 2005, 23(5):347-349.HUANG P J, LI Y X, RONG G D, et al. Impact of Astragalus membranaceus on levels of IFN-γ and IL-18 in sera from mice infected with Toxoplasma gondii[J]. Chinese Journal of Clinical Laboratory Science, 2005, 23(5):347-349. (in Chinese) |
[30] | 邱燕华, 翟斌涛, 尚小飞, 等. 桧烯抗弓形虫活性的体外评价[J]. 畜牧兽医学报, 2021, 52(10):2915-2923.QIU Y H, ZHAI B T, SHANG X F, et al. Evaluation of the activity of sabinene against Toxoplasma gondii in vitro[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(10):2915-2923. (in Chinese) |
[31] | 程小艳, 朴莲荀. 中药抗弓形虫的作用及其机制的研究进展[J]. 华西药学杂志, 2016, 31(2):215-217.CHENG X Y, PU L X. Research progress on the effect and mechanism of traditional Chinese medicine against Toxoplasma gondii[J]. West China Journal of Pharmaceutical Sciences, 2016, 31(2):215-217. (in Chinese) |
[32] | 常江艳, 李朝, 非绍江, 等. 纳米技术在寄生虫学中的应用[J]. 中国畜牧兽医, 2017, 44(11):3294-3299.CHANG J Y, LI Z, FEI S J, et al. Application of nanotechnology in parasitology[J]. China Animal Husbandry & Veterinary Medicine, 2017, 44(11):3294-3299. (in Chinese) |
[33] | 戴建荣, 朱荫昌. 纳米药物研究进展[J]. 中国血吸虫病防治杂志, 2006, 18(1):74-77.DAI J R, ZHU Y C. Progress of research on nanodrugs[J]. Chinese Journal of Schistosomiasis Control, 2006, 18(1):74-77. (in Chinese) |
[34] | DAR M J, MCELROY C A, KHAN M I, et al. Development and evaluation of novel miltefosine-polyphenol co-loaded second generation nano-transfersomes for the topical treatment of cutaneous leishmaniasis[J]. Expert Opin Drug Deliv, 2020, 17(1):97-110. |
[35] | 孔秋晨, 佘慧明, 杨粤军. 纳米抗菌材料的研究进展[J]. 生物化工, 2022, 8(1):158-163.KONG Q C, SHE H M, YANG Y J. Research progress of nanometer antibacterial materials[J]. Biological Chemical Engineering, 2022, 8(1):158-163. (in Chinese) |
[36] | RAHMAN K, KHAN S U, FAHAD S, et al. Nano-biotechnology:a new approach to treat and prevent malaria[J]. Int J Nanomedicine, 2019, 14:1401-1410. |
[37] | MACHADO L F, SANFELICE R A, BOSQUI L R, et al. Biogenic silver nanoparticles reduce adherence, infection, and proliferation of Toxoplasma gondii RH strain in HeLa cells without inflammatory mediators induction[J]. Exp Parasitol, 2020, 211:107853. |
[38] | ADEYEMI O S, MURATA Y, SUGI T, et al. Nanoparticles show potential to retard bradyzoites in vitro formation of Toxoplasma gondii[J]. Folia Parasitol (Praha), 2019, 66:2019. 001. |
[39] | AL EDHARI B, MASHREGHI M, MAKHDOUMI A, et al. Antibacterial and antibiofilm efficacy of Ag NPs, Ni NPs and Al2O3 NPs singly and in combination against multidrug-resistant Klebsiella pneumoniae isolates[J]. J Trace Elem Med Biol, 2021, 68:126840. |
[40] | 阮林高, 殷瑜. 金属纳米粒子与抗生素联用抗耐药菌[J]. 中国抗生素杂志, 2018, 43(8):971-978.RUAN L G, YIN Y. Combating drug-resistant bacteria by combining metal nanoparticles with antibiotics[J]. Chinese Journal of Antibiotics, 2018, 43(8):971-978. (in Chinese) |
[41] | QUAN J H, GAO F F, ISMAIL H A H A, et al. Silver nanoparticle-induced apoptosis in ARPE-19 cells is inhibited by Toxoplasma gondii pre-infection through suppression of NOX4-dependent ROS generation[J]. Int J Nanomedicine, 2020, 15:3695-3716. |
[42] | SHOJAEE S, FIROUZEH N, KESHAVARZ H, et al. Nanosilver colloid inhibits Toxoplasma gondii tachyzoites and bradyzoites in vitro[J]. Iran J Parasitol, 2019, 14(3):362-367. |
[43] | NAFARI A, CHERAGHIPOUR K, SEPAHVAND M, et al. Nanoparticles:New agents toward treatment of leishmaniasis[J]. Parasite Epidemiol Control, 2020, 10:e00156. |
[44] | ALAJMI R A, AL-MEGRIN W A, METWALLY D, et al. Anti- Toxoplasma activity of silver nanoparticles green synthesized with Phoenix dactylifera and Ziziphus spina-christi extracts which inhibits inflammation through liver regulation of cytokines in Balb/c mice[J]. Biosci Rep, 2019, 39(5):BSR20190379. |
[45] | SIDDIQI K S, HUSEN A, RAO R A K. A review on biosynthesis of silver nanoparticles and their biocidal properties[J]. J Nanobiotechnol, 2018, 16(1):14. |
[46] | EFTHIMIOU I, KALAMARAS G, PAPAVASILEIOU K, et al. ZnO, Ag and ZnO-Ag nanoparticles exhibit differential modes of toxic and oxidative action in hemocytes of mussel Mytilus galloprovincialis[J]. Sci Total Environ, 2021, 767:144699. |
[47] | PISSUWAN D, VALENZUELA S M, MILLER C M, et al. A golden bullet? Selective targeting of Toxoplasma gondii tachyzoites using antibody-functionalized gold nanorods[J]. Nano Lett, 2007, 7(12):3808-3812. |
[48] | PISSUWAN D, VALENZUELA S M, MILLER C M, et al. Destruction and control of Toxoplasma gondii tachyzoites using gold nanosphere/antibody conjugates[J]. Small, 2009, 5(9):1030-1034. |
[49] | JAIN P K, LEE K S, EL-SAYED I H, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition:applications in biological imaging and biomedicine[J]. J Phys Chem B, 2006, 110(14):7238-7248. |
[50] | KEYHANI A, ZIAALI N, SHAKIBAIE M, et al. Biogenic selenium nanoparticles target chronic toxoplasmosis with minimal cytotoxicity in a mouse model[J]. J Med Microbiol, 2020, 69(1):104-110. |
[51] | FAN X Z, YAHIA L, SACHER E. Antimicrobial properties of the Ag, Cu nanoparticle system[J]. Biology (Basel), 2021, 10(2):137. |
[52] | GUTIÉRREZ V, SEABRA A B, REGUERA R M, et al. New approaches from nanomedicine for treating leishmaniasis[J]. Chem Soc Rev, 2016, 45(1):152-168. |
[53] | KHALIL N M, DE MATTOS A C, CARRARO T C M M, et al. Nanotechnological strategies for the treatment of neglected diseases[J]. Curr Pharm Des, 2013, 19(41):7316-7329. |
[54] | ZAMANI P, MOMTAZI-BOROJENI A A, NIK M E, et al. Nanoliposomes as the adjuvant delivery systems in cancer immunotherapy[J]. J Cell Physiol, 2018, 233(7):5189-5199. |
[55] | MELLORS J W, DEBS R J, RYAN J L. Incorporation of recombinant gamma interferon into liposomes enhances its ability to induce peritoneal macrophage antitoxoplasma activity[J]. Infect Immun, 1989, 57(1):132-137. |
[56] | TACHIBANA H, YOSHIHARA E, KANEDA Y, et al. Protection of Toxoplasma gondii -infected mice by stearylamine-bearing liposomes[J]. J Parasitol, 1990, 76(3):352-355. |
[57] | FRANCOLINI I, PIOZZI A, DONELLI G. Usnic acid:potential role in management of wound infections[M]//DONELLI G. Advances in Microbiology, Infectious Diseases and Public Health. Cham:Springer, 2018:31-41. |
[58] | SI K W, WEI L L, YU X Z, et al. Effects of (+)-usnic acid and (+)-usnic acid-liposome on Toxoplasma gondii[J]. Exp Parasitol, 2016, 166:68-74. |
[59] | 王敏, 杨中澜, 周莉莉, 等. 固体脂质纳米粒吸入粉雾剂的研究进展[J]. 中国新药杂志, 2022, 31(6):567-572.WANG M, YANG Z L, ZHOU L L, et al. Research progress in inhaled powder aerosols of solid lipid nanoparticles[J]. Chinese Journal of New Drugs, 2022, 31(6):567-572. (in Chinese) |
[60] | KHOSRAVI M, RAHIMI H M, DOROUD D, et al. In vitro evaluation of mannosylated paromomycin-loaded solid lipid nanoparticles on acute toxoplasmosis[J]. Front Cell Infect Microbiol, 2020, 10:33. |
[61] | AZAMI S J, AMANI A, KESHAVARZ H, et al. Nanoemulsion of atovaquone as a promising approach for treatment of acute and chronic toxoplasmosis[J]. Eur J Pharm Sci, 2018, 117:138-146. |
[62] | ANTON N, BENOIT J P, SAULNIER P. Design and production of nanoparticles formulated from Nano-emulsion templates-a review[J]. J Control Release, 2008, 128(3):185-199. |
[63] | SCHÖLER N, KRAUSE K, KAYSER O, et al. Atovaquone nanosuspensions show excellent therapeutic effect in a new murine model of reactivated toxoplasmosis[J]. Antimicrob Agents Chemother, 2001, 45(6):1771-1779. |
[64] | SHUBAR H M, LACHENMAIER S, HEIMESAAT M M, et al. SDS-coated atovaquone nanosuspensions show improved therapeutic efficacy against experimental acquired and reactivated toxoplasmosis by improving passage of gastrointestinal and blood-brain barriers[J]. J Drug Target, 2011, 19(2):114-124. |
[65] | 潘超, 王晓峰. 壳聚糖纳米粒子在药物递送系统中的应用进展[J]. 实用临床医药杂志, 2021, 25(4):116-120.PAN C, WANG X F. Research progress on application of chitosan nanoparticles in drug delivery system[J]. Journal of Clinical Medicine in Practice, 2021, 25(4):116-120. (in Chinese) |
[66] | WANG J J, ZENG Z W, XIAO R Z, et al. Recent advances of chitosan nanoparticles as drug carriers[J]. Int J Nanomedicine, 2011, 6:765-774. |
[67] | ETEWA S E, EL-MAATY D A A, HAMZA R S, et al. Assessment of spiramycin-loaded chitosan nanoparticles treatment on acute and chronic toxoplasmosis in mice[J]. J Parasit Dis, 2018, 42(1):102-113. |
[68] | HAGRAS N A E, ALLAM A F, FARAG H F, et al. Successful treatment of acute experimental toxoplasmosis by spiramycin-loaded chitosan nanoparticles[J]. Exp Parasitol, 2019, 204:107717. |
[69] | TEIMOURI A, AZAMI S J, KESHAVARZ H, et al. Anti- Toxoplasma activity of various molecular weights and concentrations of chitosan nanoparticles on tachyzoites of RH strain[J]. Int J Nanomedicine, 2018, 13:1341-1351. |
[70] | GAAFAR M R, MADY R F, DIAB R G, et al. Chitosan and silver nanoparticles:promising anti- toxoplasma agents[J]. Exp Parasitol, 2014, 143:30-38.https://www.sciencedirect.com/science/article/pii/S0014489414001192. |
[71] | 刘涛, 张文君, 张国锋, 等. 纳米技术在中药中的应用[J]. 药学研究, 2022, 41(3):187-194, 201.LIU T, ZHANG W J, ZHANG G F, et al. Application of nanotechnology in traditional Chinese medicine[J]. Journal of Pharmaceutical Research, 2022, 41(3):187-194, 201. (in Chinese) |
[72] | 郑海生, 蓝育青, 钟兴武, 等. 姜黄素纳米粒对人视网膜色素上皮细胞增殖的影响[J]. 中国组织工程研究, 2022, 26(27):4335-4339.ZHENG H S, LAN Y Q, ZHONG X W, et al. Effect of curcumin nanoparticles on proliferation of human retinal pigment epithelial cells[J]. Chinese Journal of Tissue Engineering Research, 2022, 26(27):4335-4339. (in Chinese) |
[73] | AZAMI S J, TEIMOURI A, KESHAVARZ H, et al. Curcumin nanoemulsion as a novel chemical for the treatment of acute and chronic toxoplasmosis in mice[J]. Int J Nanomedicine, 2018, 13:7363-7374. |
[74] | LU J M, JIN G N, LU Y N, et al. Resveratrol modulates Toxoplasma gondii infection induced liver injury by intervening in the HMGB1/TLR4/NF-κB signaling pathway[J]. Eur J Pharmacol, 2021, 910:174497. |
[75] | RAHIMI H M, KHOSRAVI M, HESARI Z, et al. Anti- Toxoplasma activity and chemical compositions of aquatic extract of Mentha pulegium L. and Rubus idaeus L.:An in vitro study[J]. Food Sci Nutr, 2020, 8(7):3656-3664. |
[76] | PATRA J K, DAS G, FRACETO L F, et al. Nano based drug delivery systems:recent developments and future prospects[J]. J Nanobiotechnol, 2018, 16(1):71. |
[1] | CHEN Huixian, CHEN Yajie, WANG Xianmei, WANG Lifang, LIU Qun, LIU Jing. Identification of the Cross-reacting Antigen MIC17A of Toxoplasma gondii and Neospora caninum and the Study of Its Cross-immune Protective Efficacy in Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2300-2306. |
[2] | FU Ming, HE Junjun, ZHU Xingquan, CONG Wei. Proteomic Analysis of Changes in the Mouse Brain Tissue Infected with Toxoplasma gondii Oocysts during the Acute and Chronic Stage [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2): 556-566. |
[3] | WANG Pei, WANG Meng, LI Tingting, ZHENG Xiaonan, LIANG Qinli, CHEN Xiaoqing. Generation and Basic Functional Characterization of Four Hypothetical Protein Genes Deletion Strains of Toxoplasma gondii [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3598-3608. |
[4] | ZHENG Xiaonan, LI Tingting, WANG Jinlei, ZHENG Wenbin, ZHU Xingquan. Research Progress on Biological Functions of Dense Granule Proteins of Toxoplasma gondii [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3345-3357. |
[5] | YIN Deqi, WEI Ziwei, ZHANG Yiwei, SANG Xiaoyu, YANG Na, FENG Ying, CHEN Ran, JIANG Ning. Research Progress in Protein Post-translational Modifications of Toxoplasma gondii [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(11): 2995-3005. |
[6] | QIU Yanhua, ZHAI Bintao, SHANG Xiaofei, ZHOU Xuzheng, LI Bing, ZHANG Jiyu. Evaluation of the Activity of Sabinene against Toxoplasma gondii in vitro [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(10): 2915-2923. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||