Acta Veterinaria et Zootechnica Sinica ›› 2023, Vol. 54 ›› Issue (6): 2252-2263.doi: 10.11843/j.issn.0366-6964.2023.06.005
• REVIEW • Previous Articles Next Articles
CHEN Songbiao1,2,3, SHANG Ke1,2,3, DU Fuxi1,2,3, YU Zuhua1,2,3, LI Jing1,2,3, JIA Yanyan1,2,3, LIAO Chengshui1,2,3, ZHANG Chunjie1,2,3, DING Ke1,2,3*, CHENG Xiangchao1,2,3*
Received:
2022-10-26
Online:
2023-06-23
Published:
2023-06-16
CLC Number:
CHEN Songbiao, SHANG Ke, DU Fuxi, YU Zuhua, LI Jing, JIA Yanyan, LIAO Chengshui, ZHANG Chunjie, DING Ke, CHENG Xiangchao. Research Process of Assembly, Structural Features, and Secretion Regulatory Networks of Type VI Secretion System in Salmonella[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2252-2263.
[1] | FERNANDES S A, TAVECHIO A T, GHILARDI Ȃ C R, et al. Salmonella enterica serotypes from human and nonhuman sources in Sao Paulo State, Brazil, 2004-2020[J]. Rev Inst Med Trop Sao Paulo, 2022, 64:e66. |
[2] | 王晓利, 杜付玉, 廖成水. Ⅲ型分泌系统在沙门菌囊泡形成中的作用研究进展[J]. 中国预防兽医学报, 2021, 43(1):106-109.WANG X L, DU F Y, LIAO C S. Research progress on the role of the type Ⅲ secretion system in Salmonella-containing vacuole[J]. Chinese Journal of Preventive Veterinary Medicine, 2021, 43(1):106-109. (in Chinese) |
[3] | PUKATZKI S, MA A T, STURTEVANT D, et al. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system[J]. Proc Natl Acad Sci U S A, 2006, 103(5):1528-1533. |
[4] | LU D, SHANG G, YU Q, et al. Expression, purification and preliminary crystallographic analysis of the T6SS effector protein Tse3 from Pseudomonas aeruginosa[J]. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2013, 69(Pt 5):524-527. |
[5] | MARCHI M, BOUTIN M, GAZENGEL K, et al. Genomic analysis of the biocontrol strain Pseudomonas fluorescens Pf29Arp with evidence of T3SS and T6SS gene expression on plant roots[J]. Environ Microbiol Rep, 2013, 5(3):393-403. |
[6] | WANG X, WANG Q Y, XIAO J F, et al. Edwardsiella tarda T6SS component evpP is regulated by esrB and iron, and plays essential roles in the invasion of fish[J]. Fish Shellfish Immunol, 2009, 27(3):469-477. |
[7] | HESPANHOL J T, SANCHEZ-LIMACHE D E, NICASTRO G G, et al. Antibacterial T6SS effectors with a VRR-Nuc domain are structure-specific nucleases[J]. Elife, 2022, 11:e82437. |
[8] | JURĖNAS D, CASCALES E. T6SS:killing two bugs with one stone[J]. Trends Microbiol, 2022, 30(1):1-2. |
[9] | LI C F, ZHU L F, WANG D D, et al. T6SS secretes an LPS-binding effector to recruit OMVs for exploitative competition and horizontal gene transfer[J]. ISME J, 2022, 16(2):500-510. |
[10] | 杨建社, 王帅涛, 牛艳婷, 等. 铜绿假单胞菌T6SS的组装、分泌、功能和调控[J]. 微生物学报, 2021, 61(9):2607-2627.YANG J S, WANG S T, NIU Y T, et al. Assembly, secretion, function, and regulation of T6SS in Pseudomonas aeruginosa[J]. Acta Microbiologica Sinica, 2021, 61(9):2607-2627. (in Chinese) |
[11] | BLONDEL C J, JIMÉNEZ J C, CONTRERAS I, et al. Comparative genomic analysis uncovers 3 novel loci encoding type six secretion systems differentially distributed in Salmonella serotypes[J]. BMC Genomics, 2009, 10:354. |
[12] | BOYER F, FICHANT G, BERTHOD J, et al. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis:what can be learned from available microbial genomic resources?[J]. BMC Genomics, 2009, 10:104. |
[13] | BINGLE L E H, BAILEY C M, PALLEN M J. Type VI secretion:a beginner's guide[J]. Curr Opin Microbiol, 2008, 11(1):3-8. |
[14] | WANG S H, YANG D H, WU X J, et al. The ferric uptake regulator represses type VI secretion system function by binding directly to the clpV promoter in Salmonella enterica serovar typhimurium[J]. Infect Immun, 2019, 87(10):e00562-19. |
[15] | XIAN H H, YUAN Y, YIN C, et al. The SPI-19 encoded T6SS is required for Salmonella pullorum survival within avian macrophages and initial colonization in chicken dependent on inhibition of host immune response[J]. Vet Microbiol, 2020, 250:108867. |
[16] | YU K W, XUE P, FU Y, et al. T6SS mediated stress responses for bacterial environmental survival and host adaptation[J]. Int J Mol Sci, 2021, 22(2):478. |
[17] | ZHU L F, XU L, WANG C G, et al. T6SS translocates a micropeptide to suppress STING-mediated innate immunity by sequestering manganese[J]. Proc Natl Acad Sci U S A, 2021, 118(42):e2103526118. |
[18] | SANA T G, FLAUGNATTI N, LUGO K A, et al. Salmonella typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut[J]. Proc Natl Acad Sci U S A, 2016, 113(34):E5044-E5051. |
[19] | ZHANG H, ZHANG H, GAO Z Q, et al. Structure of the type VI effector-immunity complex (Tae4-Tai4) provides novel insights into the inhibition mechanism of the effector by its immunity protein[J]. J Biol Chem, 2013, 288(8):5928-5939. |
[20] | NAVARRO-GARCIA F, RUIZ-PEREZ F, CATALDI Á, et al. Type VI secretion system in pathogenic Escherichia coli:structure, role in virulence, and acquisition[J]. Front Microbiol, 2019, 10:1965. |
[21] | MOUGOUS J D, CUFF M E, RAUNSER S, et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus[J]. Science, 2006, 312(5779):1526-1530. |
[22] | SPÍNOLA-AMILIBIA M, DAVÓ-SIGUERO I, RUIZ F M, et al. The structure of VgrG1 from Pseudomonas aeruginosa, the needle tip of the bacterial type VI secretion system[J]. Acta Crystallogr D Struct Biol, 2016, 72(Pt 1):22-33. |
[23] | RENAULT M G, BEAS J Z, DOUZI B, et al. The gp27-like hub of VgrG serves as adaptor to promote Hcp tube assembly[J]. J Mol Biol, 2018, 430(18 Pt B):3143-3156. |
[24] | SHNEIDER M M, BUTH S A, HO B T, et al. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike[J]. Nature, 2013, 500(7462):350-353. |
[25] | 姚丰华, 张钰, 朱国强. 沙门菌Ⅵ型分泌系统研究进展[J]. 中国预防兽医学报, 2014, 36(6):493-497.YAO F H, ZHANG Y, ZHU G Q. Research process on Salmonella secretion systems[J]. Chinese Journal of Preventive Veterinary Medicine, 2014, 36(6):493-497. (in Chinese) |
[26] | GUEGUEN E, WILLS N M, ATKINS J F, et al. Transcriptional frameshifting rescues Citrobacter rodentium type VI secretion by the production of two length variants from the prematurely interrupted tssM gene[J]. PLoS Genet, 2014, 10(12):e1004869. |
[27] | JOURNET L, CASCALES E. The type VI secretion system in Escherichia coli and related species[J]. EcoSal Plus, 2016, doi:10. 1128/ecosalplus. ESP-0009-2015. |
[28] | CIANFANELLI F R, MONLEZUN L, COULTHURST S J. Aim, load, fire:the type VI secretion system, a bacterial nanoweapon[J]. Trends Microbiol, 2016, 24(1):51-62. |
[29] | LIANG X Y, PEI T T, LI H, et al. VgrG-dependent effectors and chaperones modulate the assembly of the type VI secretion system[J]. PLoS Pathog, 2021, 17(12):e1010116. |
[30] | 宋祥军, 沈啸, 蒋胡艳, 等. 禽致病性大肠杆菌Hcp2b对雏鸡气管黏膜细胞因子-细胞因子受体相互作用通路的影响[J]. 畜牧兽医学报, 2021, 52(3): 742-751.SONG X J, SHEN X, JIANG H Y, et al. Effect of avian pathogenic Escherichia coli Hcp2b on the cytokine-cytokine receptor interaction pathway in chick tracheal mucosa[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(3): 742-751. (in Chinese) |
[31] | BRUNET Y R, KHODR A, LOGGER L, et al. H-NS silencing of the Salmonella pathogenicity island 6-encoded type VI secretion system limits Salmonella enterica serovar typhimurium interbacterial killing[J]. Infect Immun, 2015, 83(7):2738-2750. |
[32] | SIBINELLI-SOUSA S, HESPANHOL J T, NICASTRO G G, et al. A family of T6SS antibacterial effectors related to l, d-transpeptidases targets the peptidoglycan[J]. Cell Rep, 2020, 31(12):107813. |
[33] | WANG P, DONG J F, LI R Q, et al. Roles of the Hcp family proteins in the pathogenicity of Salmonella typhimurium 14028s[J]. Virulence, 2020, 11(1):1716-1726. |
[34] | ZHENG L M, WANG S H, LING M Y, et al. Salmonella enteritidis Hcp distribute in the cytoplasm and regulate TNF signaling pathway in BHK-21 cells[J]. 3 Biotech, 2020, 10(7):301. |
[35] | SCHLIEKER C, ZENTGRAF H, DERSCH P, et al. ClpV, a unique Hsp100/Clp member of pathogenic proteobacteria[J]. Biol Chem, 2005, 386(11):1115-1127. |
[36] | MULDER D T, COOPER C A, COOMBES B K. Type VI secretion system-associated gene clusters contribute to pathogenesis of Salmonella enterica serovar Typhimurium[J]. Infect Immun, 2012, 80(6):1996-2007. |
[37] | AHMAD S, TSANG K K, SACHAR K, et al. Structural basis for effector transmembrane domain recognition by type VI secretion system chaperones[J]. Elife, 2020, 9:e62816. |
[38] | PARSONS D A, HEFFRON F. sciS, an icmF homolog in Salmonella enterica serovar Typhimurium, limits intracellular replication and decreases virulence[J]. Infect Immun, 2005, 73(7):4338-4345. |
[39] | KLUMPP J, FUCHS T M. Identification of novel genes in genomic islands that contribute to Salmonella typhimurium replication in macrophages[J]. Microbiology (Reading), 2007, 153(Pt 4):1207-1220. |
[40] | SHRIVASTAVA S, MANDE S S. Identification and functional characterization of gene components of Type VI secretion system in bacterial genomes[J]. PLoS One, 2008, 3(8):e2955. |
[41] | MOUGOUS J D, GIFFORD C A, RAMSDELL T L, et al. Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa[J]. Nat Cell Biol, 2007, 9(7):797-803. |
[42] | THOMSON N R, CLAYTON D J, WINDHORST D, et al. Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella gallinarum 287/91 provides insights into evolutionary and host adaptation pathways[J]. Genome Res, 2008, 18(10):1624-1637. |
[43] | SCHROLL C, HUANG K S, AHMED S, et al. The SPI-19 encoded type-six secretion-systems (T6SS) of Salmonella enterica serovars Gallinarum and Dublin play different roles during infection[J]. Vet Microbiol, 2019, 230:23-31. |
[44] | SHAH D H, LEE M J, PARK J H, et al. Identification of Salmonella gallinarum virulence genes in a chicken infection model using PCR-based signature-tagged mutagenesis[J]. Microbiology (Reading), 2005, 151(Pt 12):3957-3968. |
[45] | YEATS C, FINN R D, BATEMAN A. The PASTA domain:a β-lactam-binding domain[J]. Trends Biochem Sci, 2002, 27(9):438-440. |
[46] | PARRET A H A, DE MOT R. Escherichia coli's uropathogenic-specific protein:a bacteriocin promoting infectivity?[J]. Microbiology (Reading), 2002, 148(Pt 6):1604-1606. |
[47] | FOOKES M, SCHROEDER G N, LANGRIDGE G C, et al. Salmonella bongori provides insights into the evolution of the Salmonellae[J]. PLoS Pathog, 2011, 7(8):e1002191. |
[48] | WANG X Y, ZHU S L, ZHAO J H, et al. Genetic boundaries delineate the potential human pathogen Salmonella bongori into discrete lineages:divergence and speciation[J]. BMC Genomics, 2019, 20(1):930. |
[49] | LESIC B, STARKEY M, HE J, et al. Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis[J]. Microbiology (Reading), 2009, 155(Pt 9):2845-2855. |
[50] | ZHENG J, LEUNG K Y. Dissection of a type VI secretion system in Edwardsiella tarda[J]. Mol Microbiol, 2007, 66(5):1192-1206. |
[51] | CHEN L H, ZOU Y R, SHE P F, et al. Composition, function, and regulation of T6SS in Pseudomonas aeruginosa[J]. Microbiol Res, 2015, 172:19-25. |
[52] | LEUNG K Y, SIAME B A, SNOWBALL H, et al. Type VI secretion regulation:crosstalk and intracellular communication[J]. Curr Opin Microbiol, 2011, 14(1):9-15. |
[53] | LEE A K, DETWEILER C S, FALKOW S. OmpR regulates the two-component system SsrA-ssrB in Salmonella pathogenicity island 2[J]. J Bacteriol, 2000, 182(3):771-781. |
[54] | 戴鹏, 扬溢, 赵亚荣, 等. 沙门氏菌群体感应系统研究进展[J]. 生物加工过程, 2019, 17(3):257-263, 323.DAI P, YANG Y, ZHAO Y R, et al. Research progress in quorum sensing system in Salmonella[J]. Chinese Journal of Bioprocess Engineering, 2019, 17(3):257-263, 323. (in Chinese) |
[55] | SHOLPAN A, LAMAS A, CEPEDA A, et al. Salmonella spp. quorum sensing:an overview from environmental persistence to host cell invasion[J]. AIMS Microbiol, 2021, 7(2):238-256. |
[56] | DUNLAP P V. Quorum regulation of luminescence in Vibrio fischeri[J]. J Mol Microbiol Biotechnol, 1999, 1(1):5-12. |
[57] | LI S J, WU S J, REN Y X, et al. Characterization of differentiated autoregulation of LuxI/LuxR-type quorum sensing system in Pseudoalteromonas[J]. Biochem Biophys Res Commun, 2022, 590:177-183. |
[58] | WANG W J, ZHANG J, TAO H, et al. E. coli biosensor based on modular GFP and luxI/luxR cyclic amplification circuit for sensitive detection of lysine[J]. Anal Bioanal Chem, 2022, 414(29-30):8299-8307. |
[59] | ZHANG X J, LIU B B, DING X Y, et al. Regulatory mechanisms between quorum sensing and virulence in Salmonella[J]. Microorganisms, 2022, 10(11):2211. |
[60] | WALTERS M, SPERANDIO V. Quorum sensing in Escherichia coli and Salmonella[J]. Int J Med Microbiol, 2006, 296(2-3):125-131. |
[61] | HEGAZY W A H, SALEM I M, ALOTAIBI H F, et al. Terazosin interferes with quorum sensing and type three secretion system and diminishes the bacterial espionage to mitigate the Salmonella typhimurium pathogenesis[J]. Antibiotics (Basel), 2022, 11(4):465. |
[62] | DAS C, DUTTA A, RAJASINGH H, et al. Understanding the sequential activation of Type III and Type VI secretion systems in Salmonella typhimurium using Boolean modeling[J]. Gut Pathog, 2013, 5(1):28. |
[63] | 杨登辉. 沙门菌密度感应系统对六型分泌系统调控的相关研究[D]. 洛阳:河南科技大学, 2015.YANG D H. Study on regulation of Type Ⅵ secretion system by the quorum sensing system[D]. Luoyang:Henan University of Science and Technology, 2015. (in Chinese) |
[64] | 钟璐嘉, 蒋文灿, 李鑫, 等. 细菌Ⅵ型分泌系统结构和功能的研究进展[J]. 中国兽医学报, 2021, 41(7):1419-1424, 1443.ZHONG L J, JIANG W C, LI X, et al. Research progress of structure and function of bacterial type Ⅵ secretion system[J]. Chinese Journal of Veterinary Science, 2021, 41(7):1419-1424, 1443. (in Chinese) |
[65] | WANG T T, SI M R, SONG Y H, et al. Type VI secretion system transports Zn2+ to combat multiple stresses and host immunity[J]. PLoS Pathog, 2015, 11(7):e1005020. |
[66] | DESHAZER D. A novel contact-independent T6SS that maintains redox homeostasis via Zn2+ and Mn2+acquisition is conserved in the Burkholderia pseudomallei complex[J]. Microbiol Res, 2019, 226:48-54. |
[67] | SI M R, WANG Y, ZHANG B, et al. The Type VI secretion system engages a redox-regulated dual-functional heme transporter for zinc acquisition[J]. Cell Rep, 2017, 20(4):949-959. |
[68] | BERAUD M, KOLB A, MONTEIL V, et al. A proteomic analysis reveals differential regulation of the σS-dependent yciGFE(katN) locus by YncC and H-NS in Salmonella and Escherichia coli K-12[J]. Mol Cell Proteomics, 2010, 9(12):2601-2616. |
[69] | GROISMAN E A, DUPREY A, CHOI J. How the PhoP/PhoQ system controls virulence and Mg2+ homeostasis:lessons in signal transduction, pathogenesis, physiology, and evolution[J]. Microbiol Mol Biol Rev, 2021, 85(3):e0017620. |
[70] | PALMER A D, KIM K, SLAUCH J M. PhoP-mediated repression of the SPI1 Type 3 secretion system in Salmonella enterica serovar typhimurium[J]. J Bacteriol, 2019, 201(16):e00264-19. |
[71] | KO D, CHOI S H. Mechanistic understanding of antibiotic resistance mediated by EnvZ/OmpR two-component system in Salmonella enterica serovar Enteritidis[J]. J Antimicrob Chemother, 2022, 77(9):2419-2428. |
[72] | RODRIGUEZ C R, SCHECHTER L M, LEE C A. Detection and characterization of the S. typhimurium HilA protein[J]. BMC Microbiol, 2002, 2:31. |
[73] | TOMLJENOVIC-BERUBE A M, MULDER D T, WHITESIDE M D, et al. Identification of the regulatory logic controlling Salmonella pathoadaptation by the SsrA-SsrB two-component system[J]. PLoS Genet, 2010, 6(3):e1000875. |
[74] | GARMENDIA J, BEUZON C R, RUIZ-ALBERT J, et al. The roles of SsrA-SsrB and OmpR-EnvZ in the regulation of genes encoding the Salmonella typhimurium SPI-2 type III secretion system[J]. Microbiology (Reading), 2003, 149(Pt 9):2385-2396. |
[75] | RAY S, PANDEY N K, KUSHWAHA G S, et al. Structural investigation on SPI-6-associated Salmonella typhimurium VirG-like stress protein that promotes pathogen survival in macrophages[J].Protein Sci, 2022, 31(4):835-849. |
[76] | VANDERWAAL K, DEEN J. Global trends in infectious diseases of swine[J]. Proc Natl Acad Sci U S A, 2018, 115(45):11495-11500. |
[77] | GAO X P, MU Z X, QIN B, et al. Structure-based prototype peptides targeting the Pseudomonas aeruginosa type VI secretion system effector as a novel antibacterial strategy[J]. Front Cell Infect Microbiol, 2017, 7:411. |
[78] | BARRETTO L A F, FOWLER C C. Identification of a putative T6SS immunity islet in Salmonella typhi[J]. Pathogens, 2020, 9(7):559. |
[1] | WANG Dong, LIU Kexin, HE Yanjun, DENG Shouxiang, LIU Yun, MA Weiming. Effects of Dietary Sodium Humate Supplementation on Liver Tissue Inflammation and Antioxidant Capacity of Salmonella Typhimurium-Infected Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 629-639. |
[2] | LI Zhaolong, KONG Xiangrui, LIN Fengqiang, WANG Xiuping, ZHAO Ran, PENG Xiaoli, CHEN Changsong. Preliminary Study of the Mechanism of Inhibition of Salmonella Typhimurium by Ec-12 Supernatant [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 739-750. |
[3] | ZHANG Ping, ZHUANG Linlin, ZHANG Di, DONG Yongyi, SHENG Zhongwei, WANG Chengming, XU Bu, DOU Xinhong, GONG Jiansen. Research Progress on Molecular Detection Methods of Salmonella [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3217-3229. |
[4] | ZHANG Qianwen, LIU Yumei, SHI Lihui, LIANG Wenjun, LI Mengyun, WANG Yuqin, ZHANG Ziqiang. Pathological Observation and Drug Sensitivity Analysis of Salmonella Infection in Female Rabbits [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3510-3518. |
[5] | SUN Yufan, YU Panyuan, CHEN Hongyu, TAN Yiqing, CHEN Xiabing, ZHANG Tengfei, GAO Ting, ZHOU Rui, LI Lu. Evaluation of the Efficacy of Potassium Diformate in the Prevention of Salmonella Infection and the Effect on Intestinal Flora [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 2101-2113. |
[6] | QIN Lei, WU Huimin, XU Qiqi, CHEN Wanzhao, WANG Dong, LI Hongbo, XIA Panpan, LIU Zepeng, XIA Lining. Effect of Exogenous Drug-Resistant Salmonella Typhimurium on Intestinal Flora in Healthy Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 2158-2169. |
[7] | TIAN Yanhong, YU Jiangxu, JIAO Yuzhou, GAO Dongyang, CAI Xuwang. Research Progress on Structural Modification and Its Effects of Salmonella Lipopolysaccharides [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1392-1402. |
[8] | YAO Min, SHI Bomei, HUANG Tinghua. A Preliminary Research of the Regulation of MAPK-CDK6-RB Pathway by Salmonella SptP in Macrophages [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1187-1198. |
[9] | JIANG Zenghai, TENG Lin, HE Anwen, LIU Yanyan, YUE Min, HE Qigai. Genomic Analysis of Salmonella Typhimurium Isolates and Salmonella Serotype 4, [5], 12: i:- Isolates from Pig-borne Food Chain [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1199-1209. |
[10] | LI Lili, CHEN Kaifeng, CHEN Bing, ZHOU Zhouping, WANG Nanwei, QU Xiaoyun, XU Chenggang, LIAO Ming, ZHANG Jianmin. Regulatory Role of STM1827 in the Biofilm Formation and Environmental Stress of Salmonella Typhimurium [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 5207-5217. |
[11] | HAN Shengyi, LI Lingxia, LI Shuping, HU Guoyuan, LI Shengqing. Biological Characteristics and Genome Analysis of Salmonella Phage SP3 [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 5228-5239. |
[12] | WU Zhouhui, WANG Yu, DU Heng, WANG Zhiwen, XIAO Shuang, WU Jinliang, WANG Zhen. Analysis of the Antibacterial Sensitization Activity of Tirapazamine against Multi-Drug Resistant Salmonella [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4362-4371. |
[13] | CEN Xin, YANG Tingting, ZHAO Zunfu, WEN Yongping, ZHANG Huanrong. Isolation, Identification, Biological Characteristics and Genome Analysis of a Virulent Salmonella Phage [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2677-2688. |
[14] | ZHANG Na, WANG Fei, GE Ximin, ZHAO Guiping, WEN Jie, LI Qinghe. Correlation between the Expression Level of USP7 and the Immune Response to Salmonella Infection in Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2396-2402. |
[15] | CAO Li, CHENG Runan, WU Zhouhui, WANG Jiawei, WANG Yu, ZHANG Yonghong, WU Qingmin, WANG Zhen. Construction and Biological Characteristics of sapC Gene Deletion Strain of Salmonella Typhimurium [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2282-2289. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||