[1] 张临, 卢芳, 付恒峰, 等. 鼠伤寒沙门菌BaeSR对氟喹诺酮类药物耐药性的调控机制[J]. 畜牧兽医学报, 2022, 53(3):894-903.ZHANG L, LU F, FU H F, et al. Regulation mechanism of BaeSR on fluoroquinolones resistance in Salmonella Typhimurium[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(3):894-903. (in Chinese) [2] POPA G L, POPA M I. Salmonella spp. infection-a continuous threat worldwide[J]. Germs, 2020, 11(1):88-96. [3] 曹莉, 武周慧, 程如楠, 等. 鼠伤寒沙门菌mgtC基因生物学功能的研究[J]. 北京农学院学报, 2022, 37(2):66-71.CAO L, WU Z H, CHENG R N, et al. On the biological characteristics of mgtC gene deletion strain of Salmonella Typhimurium[J]. Journal of Beijing University of Agriculture, 2022, 37(2):66-71. (in Chinese) [4] 费霞, 田一辰, 黄山, 等. tolB和tolR基因缺失对鼠伤寒沙门菌生物学功能的影响[J]. 中国兽医科学, 2022, 52(11):1422-1429.FEI X, TIAN Y C, HUANG S, et al. Effect of tolB and tolR gene deletions on biological functions of Salmonella Typhimurium[J]. Chinese Veterinary Science, 2022, 52(11):1422-1429. (in Chinese) [5] WANG Y N, LIU Y, LYU N, et al. The temporal dynamics of antimicrobial-resistant Salmonella enterica and predominant serovars in China[J]. Natl Sci Rev, 2023, 10(3):nwac269. [6] CHEN K F, GAO Y, LI L L, et al. Increased drug resistance and biofilm formation ability in ST34-type Salmonella Typhimurium exhibiting multicellular behavior in China[J]. Front Microbiol, 2022, 13:876500. [7] WINTER S E, THIENNIMITR P, WINTER M G, et al. Gut inflammation provides a respiratory electron acceptor for Salmonella[J]. Nature, 2010, 467(7314):426-429. [8] ZENG M Y, INOHARA N, NUÑEZ G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut[J]. Mucosal Immunol, 2017, 10(1):18-26. [9] 苏洋洋, 黄骏, 吴白, 等. 鼠伤寒沙门菌rpoN基因缺失株构建及生物学特性研究[J]. 畜牧兽医学报, 2016, 47(4):771-778.SU Y Y, HUANG J, WU B, et al. Construction and biological characterization of rpoN gene deletion mutants of Salmonella Typhimurium[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(4):771-778. (in Chinese) [10] 曹莉, 程如楠, 武周慧, 等. 鼠伤寒沙门菌sapC基因缺失株的构建及生物学特性分析[J]. 畜牧兽医学报, 2022, 53(7):2282-2289. CAO L, CHENG R N, WU Z H, et al. Construction and biological characteristics of sapC gene deletion strain of Salmonella Typhimurium[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7):2282-2289. (in Chinese) [11] 旷年玲, 左丽, 吕兴帮, 等. 生物被膜形成对大肠杆菌致病性的影响[J]. 现代畜牧兽医, 2022(9):82-86.KUANG N L, ZUO L, LV X B, et al. Effect of biofilm formation on pathogenicity of Escherichia coli[J]. Modern Journal of Animal Husbandry and Veterinary Medicine, 2022(9):82-86. (in Chinese) [12] SISTI F, HA D G, O'TOOLE G A, et al. Cyclic-di-GMP signalling regulates motility and biofilm formation in Bordetella bronchiseptica[J]. Microbiology (Reading), 2013, 159(Pt 5):869-879. [13] 霍卫萍, 刘智猛, 陈韦, 等. 铜绿假单胞菌二鸟苷酸环化酶SiaD突变体的功能研究[J]. 微生物学报, 2022, 62(10):3997-4007. HUO W P, LIU Z M, CHEN W, et al. Functions of mutants of diguanylate cyclase SiaD from Pseudomonas aeruginosa[J]. Acta Microbiologica Sinica, 2022, 62(10):3997-4007. (in Chinese) [14] RÖMLING U. Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae[J]. Cell Mol Life Sci, 2005, 62(11):1234-1246. [15] AHMAD I, WIGREN E, LE GUYON S, et al. The EAL-like protein STM1697 regulates virulence phenotypes, motility and biofilm formation in Salmonella Typhimurium[J]. Mol Microbiol, 2013, 90(6):1216-1232. [16] SIMM R, REMMINGHORST U, AHMAD I, et al. A role for the EAL-like protein STM1344 in regulation of CsgD expression and motility in Salmonella enterica serovar Typhimurium[J]. J Bacteriol, 2009, 191(12):3928-3937. [17] SIMM R, MORR M, KADER A, et al. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility[J]. Mol Microbiol, 2004, 53(4):1123-1134. [18] DATSENKO K A, WANNER B L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products[J]. Proc Natl Acad Sci U S A, 2000, 97(12):6640-6645. [19] GÓMEZ-BALTAZAR A, VÁZQUEZ-GARCIDUENAS M S, LARSEN J, et al. Comparative stress response to food preservation conditions of ST19 and ST213 genotypes of Salmonella enterica serotype Typhimurium[J]. Food Microbiol, 2019, 82:303-315. [20] ZHANG Z Q, DU W N, WANG M, et al. Contribution of the colicin receptor CirA to biofilm formation, antibotic resistance, and pathogenicity of Salmonella Enteritidis[J]. J Basic Microbiol, 2020, 60(1):72-81. [21] DRESSAIRE C, MOREIRA R N, BARAHONA S, et al. BolA is a transcriptional switch that turns off motility and turns on biofilm development[J]. mBio, 2015, 6(1):e02352-14. [22] SIMM R, LUSCH A, KADER A, et al. Role of EAL-containing proteins in multicellular behavior of Salmonella enterica serovar Typhimurium[J]. J Bacteriol, 2007, 189(9):3613-3623. [23] 张家莉, 段世宇, 令狐远凤, 等. 鼠伤寒沙门菌ompA基因缺失株的构建及生物学特性的分析[J]. 中国动物传染病学报, 2022, 30(6):27-33. ZHANG J L, DUAN S Y, LINGHU Y F, et al. Construction of ompA gene deletion Strain of Salmonella Typhimurium and analysis of its biological characteristics[J]. Chinese Journal of Animal Infectious Diseases, 2022, 30(6):27-33. (in Chinese) [24] FOUNOU L L, FOUNOU R C, ESSACK S Y. Antibiotic resistance in the food chain:a developing country-perspective[J]. Front Microbiol, 2016, 7:1881. [25] PENESYAN A, GILLINGS M, PAULSEN I T. Antibiotic discovery:combatting bacterial resistance in cells and in biofilm communities[J]. Molecules, 2015, 20(4):5286-5298. [26] KUMAR A, ALAM A, RANI M, et al. Biofilms:survival and defense strategy for pathogens[J]. Int J Med Microbiol, 2017, 307(8):481-489. [27] DULA S, AJAYEOBA T A, IJABADENIYI O A. Bacterial biofilm formation on stainless steel in the food processing environment and its health implications[J]. Folia Microbiol (Praha), 2021, 66(3):293-302. [28] 王帅涛, 高倩倩, 成娟丽, 等. 铜绿假单胞菌生物被膜组成及其受群体感应系统和c-di-GMP调控的研究进展[J]. 微生物学报, 2021, 61(5):1106-1122.WANG S T, GAO Q Q, CHENG J L, et al. Regulation of Pseudomonas aeruginosa biofilms by quorum sensing systems and c-di-GMP[J]. Acta Microbiologica Sinica, 2021, 61(5):1106-1122. (in Chinese) [29] WHITNEY J C, COLVIN K M, MARMONT L S, et al. Structure of the cytoplasmic region of PelD, a degenerate diguanylate cyclase receptor that regulates exopolysaccharide production in Pseudomonas aeruginosa[J]. J Biol Chem, 2012, 287(28):23582-23593. [30] ALY M A, REIMHULT E, KNEIFEL W, et al. Characterization of biofilm formation by Cronobacter spp. isolates of different food origin under model conditions[J]. J Food Prot, 2019, 82(1):65-77. [31] KARATAN E, WATNICK P. Signals, regulatory networks, and materials that build and break bacterial biofilms[J]. Microbiol Mol Biol Rev, 2009, 73(2):310-347. [32] 赵文瑾, 尚道涵, 谢来工, 等. 铜绿假单胞菌环二鸟苷酸代谢及其调控生物膜形成研究进展[J]. 中国病原生物学杂志, 2022, 17(12):1468-1474.ZHAO W J, SHANG D H, XIE L G, et al. Research progress on C-di-GMP metabolism and its regulation of biofilm formation in Pseudomonas aeruginosa[J]. Journal of Pathogen Biology, 2022, 17(12):1468-1474. (in Chinese) [33] VENKATESAN N, PERUMAL G, DOBLE M. Bacterial resistance in biofilm-associated bacteria[J]. Future Microbiol, 2015, 10(11):1743-1750. [34] CHIN K C J, TAYLOR T D, HEBRARD M, et al. Transcriptomic study of Salmonella enterica subspecies enterica serovar Typhi biofilm[J]. BMC Genomics, 2017, 18(1):836. [35] 季春辉, 郭蕴, 王立霞, 等. sRNA rli82分子特征及其对单核细胞增生李斯特菌环境应激和生物被膜形成的调控作用[J]. 农业生物技术学报, 2022, 30(5):990-998.JI C H, GUO Y, WANG L X, et al. Molecular characterization of sRNA rli82 and its regulation roles in environmental stress and biofilm formation in Listeria monocytogenes[J]. Journal of Agricultural Biotechnology, 2022, 30(5):990-998. (in Chinese) [36] 郭蕴, 季春辉, 王立霞, 等. sRNA rli106在单核细胞增生李斯特菌环境应激及生物被膜形成中的调控作用研究[J]. 中国预防兽医学报, 2022, 44(3):277-283.GUO Y, JI C H, WANG L X, et al. The regulatory roles of sRNA rli106 in adaptability of Listeria monocytogenes to environmental stress and biofilm formation[J]. Chinese Journal of Preventive Veterinary Medicine, 2022, 44(3):277-283. (in Chinese) |