Acta Veterinaria et Zootechnica Sinica ›› 2023, Vol. 54 ›› Issue (6): 2264-2271.doi: 10.11843/j.issn.0366-6964.2023.06.006
• REVIEW • Previous Articles Next Articles
ZHANG Yan, LIU Jiayue, WU Meijin, ZHOU Jiahao, DIAO Hongxiu*
Received:
2022-10-31
Online:
2023-06-23
Published:
2023-06-16
CLC Number:
ZHANG Yan, LIU Jiayue, WU Meijin, ZHOU Jiahao, DIAO Hongxiu. Research Progress of Non-coding RNA as A Potential Biomarker for Canine Tumors[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2264-2271.
[1] | VAIL D M, THAMM D H, LIPTAK J. Withrow and macewen's small animal clinical oncology[M]. 6th ed. St. Louis: Elsevier, 2019. |
[2] | BRONSON R T. Variation in age at death of dogs of different sexes and breeds[J]. American J Vet Res, 1982, 43(11):2057-2059. |
[3] | MUKHERJEE S. The emperor of all maladies:a biography of cancer[M]. New York: Scribner, 2011. |
[4] | 王琭璊, 胡婧, 张佳, 等. 非编码RNA在哺乳动物中介导环境暴露信息的研究进展[J]. 中国科学:生命科学, 2022, 52(8):1137-1147.WANG L M, HU J, ZHANG J, et al. Role of Non-coding RNAs in response to environmental exposure and mediating epigenetic inheritance in mammals[J]. Scientia Sinica Vitae, 2022, 52(8):1137-1147. (in Chinese) |
[5] | 聂世豪, 刘浩, 卢瑗瑗. 非编码RNA在肿瘤中对EGFR及相关信号通路的作用和机制[J]. 中国癌症防治杂志, 2022, 14(5):564-568.NIE S H, LIU H, LU Y Y. Role and mechanism of non-coding RNA on EGFR and related signaling pathways in tumors[J]. Chinese Journal of Oncology Prevention and Treatment, 2022, 14(5):564-568. (in Chinese) |
[6] | YAN H W, BU P C. Non-coding RNA in cancer[J]. Essays Biochem, 2021, 65(4):625-639. |
[7] | VOS P D, LEEDMAN P J, FILIPOVSKA A, et al. Modulation of miRNA function by natural and synthetic RNA-binding proteins in cancer[J]. Cell Mol Life Sci, 2019, 76(19):3745-3752. |
[8] | ALLES J, FEHLMANN T, FISCHER U, et al. An estimate of the total number of true human miRNAs[J]. Nucleic Acids Res, 2019, 47(7):3353-3364. |
[9] | LOH H Y, NORMAN B P, LAI K S, et al. The regulatory role of microRNAs in breast cancer[J]. Int J Mol Sci, 2019, 20(19):4940. |
[10] | HAYES J, PERUZZI P P, LAWLER S. MicroRNAs in cancer:biomarkers, functions and therapy[J]. Trends Mol Med, 2014, 20(8):460-469. |
[11] | RAHMAN M M, BRANE A C, TOLLEFSBOL T O. MicroRNAs and epigenetics strategies to reverse breast cancer[J]. Cells, 2019, 8(10):1214. |
[12] | POIRIER F, CHAN C T J, TIMMONS P M, et al. The murine H19 gene is activated during embryonic stem cell differentiation in vitro and at the time of implantation in the developing embryo[J]. Development, 1991, 113(4):1105-1114. |
[13] | WUTZ A. Gene silencing in X-chromosome inactivation:advances in understanding facultative heterochromatin formation[J]. Nat Rev Genet, 2011, 12(8):542-553. |
[14] | ZHAO K M, WANG X W, HU Y. Identification of lncRNA-Protein Interactions by CLIP and RNA Pull-Down Assays[M]//NAVARRO A. Long Non-Coding RNAs in Cancer. New York: Humana, 2021:231-242. |
[15] | LIU T T, LI R, LIU X, et al. LncRNA XIST acts as a MicroRNA-520 sponge to regulate the Cisplatin resistance in NSCLC cells by mediating BAX through CeRNA network[J]. Int J Med Sci, 2021, 18(2):419-431. |
[16] | BRIDGES M C, DAULAGALA A C, KOURTIDIS A. LNCcation:lncRNA localization and function[J]. J Cell Biol, 2021, 220(2):e202009045. |
[17] | ESPOSITO R, BOSCH N, LANZÓS A, et al. Hacking the cancer genome: profiling therapeutically actionable long non-coding RNAs using CRISPR-Cas9 screening[J]. Cancer Cell, 2019, 35(4):545-557. |
[18] | KIM J, PIAO H L, KIM B J, et al. Long noncoding RNA MALAT1 suppresses breast cancer metastasis[J]. Nat Genet, 2018, 50(12):1705-1715. |
[19] | PENG W X, KOIRALA P, MO Y Y. LncRNA-mediated regulation of cell signaling in cancer[J]. Oncogene, 2017, 36(41):5661-5667. |
[20] | LE BÉGUEC C, WUCHER V, LAGOUTTE L, et al. Characterisation and functional predictions of canine long non-coding RNAs[J]. Sci Rep, 2018, 8(1):13444. |
[21] | KASZAK I, RUSZCZAK A, KANAFA S, et al. Current biomarkers of canine mammary tumors[J]. Acta Vet Scand, 2018, 60(1):66. |
[22] | SALAS Y, MÁRQUEZ A, DIAZ D, et al. Epidemiological study of mammary tumors in female dogs diagnosed during the period 2002-2012:a growing animal health problem[J]. PLoS One, 2015, 10(5):e0127381. |
[23] | BENAVENTE M A, BIANCHI C P, ABA M A. Canine mammary tumors:risk factors, prognosis and treatments[J]. J Vet Adv, 2016, 6(8):1291-1300. |
[24] | 陈亚方. 犬肿瘤病的发病情况调查及诊治[D]. 郑州: 河南农业大学, 2018.CHEN Y F. Investigation of the incidence and diagnosis and treatment of canine tumor disease[D]. Zhengzhou: Henan Agricultural University, 2018. (in Chinese) |
[25] | STRATMANN N, FAILING K, RICHTER A, et al. Mammary tumor recurrence in bitches after regional mastectomy[J]. Vet Surg, 2008, 37(1):82-86. |
[26] | WAGNER S, WILLENBROCK S, NOLTE I, et al. Comparison of non-coding RNAs in human and canine cancer[J]. Front Genet, 2013, 4:46. |
[27] | 任晓丽, 范玉营, 石冬梅, 等. miR-502在犬乳腺癌中的表达及意义[J]. 畜牧兽医学报, 2020, 51(1):193-197.REN X L, FAN Y Y, SHI D M, et al. Expressions of miR-502 in canine breast cancer and clinical significance[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(1):193-197. (in Chinese) |
[28] | BULKOWSKA M, RYBICKA A, SENSES K M, et al. MicroRNA expression patterns in canine mammary cancer show significant differences between metastatic and non-metastatic tumours[J]. BMC Cancer, 2017, 17(1):728. |
[29] | RAMADAN E S, SALEM N Y, EMAM I A, et al. MicroRNA-21 expression, serum tumor markers, and immunohistochemistry in canine mammary tumors[J]. Vet Res Commun, 2022, 46(2):377-388. |
[30] | JAIN M, INGOLE S D, DESHMUKH R S, et al. CEA, CA 15-3, and miRNA expression as potential biomarkers in canine mammary tumors[J]. Chromosome Res, 2021, 29(2):175-188. |
[31] | FISH E J, MARTINEZ-ROMERO E G, DEINNOCENTES P, et al. Circulating microRNA as biomarkers of canine mammary carcinoma in dogs[J]. J Vet Intern Med, 2020, 34(3):1282-1290. |
[32] | GHAFOURI-FARD S, ESMAEILI M, TAHERI M. H19 lncRNA:roles in tumorigenesis[J]. Biomed Pharmacother, 2020, 123:109774. |
[33] | KALLEN A N, ZHOU X B, XU J, et al. The imprinted H19 lncRNA antagonizes let-7 MicroRNAs[J]. Mol Cell, 2013, 52(1):101-112. |
[34] | AN F, HOU Z J, WANG X C, et al. A microfluidic demonstration of "cluster-sprout-infiltrating" mode for hypoxic mesenchymal stem cell guided cancer cell migration[J]. Biomaterials, 2022, 290:121848. |
[35] | 胡鑫, 刘剑仑, 韦薇, 等. lncRNA H19对乳腺癌细胞增殖、侵袭、迁移能力的影响及其分子机制[J]. 山东医药, 2020, 60(35):30-33.HU X, LIU J L, WEI W, et al. Effects of lncRNA H19 on proliferation, invasion, and migration of breast cancer cells and the mechanism[J]. Shandong Medical Journal, 2020, 60(35):30-33. (in Chinese) |
[36] | GUPTA R A, SHAH N, WANG K C, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis[J]. Nature, 2010, 464(7291):1071-1076. |
[37] | ZHAO W Y, GENG D H, LI S Q, et al. LncRNA HOTAIR influences cell growth, migration, invasion, and apoptosis via the miR-20a-5p/HMGA2 axis in breast cancer[J]. Cancer Med, 2018, 7(3):842-855. |
[38] | SILVA J M, BOCZEK N J, BERRES M W, et al. LSINCT5 is over expressed in breast and ovarian cancer and affects cellular proliferation[J]. RNA Biol, 2011, 8(3):496-505. |
[39] | LU B C, WU J Y, CHEN H B, et al. LncRNA expression profiles in canine mammary tumors identify lnc34977 as a promoter of proliferation, migration and invasion of canine mammary tumor cells[J]. Vet Sci, 2022, 9(2):82. |
[40] | XU E S, HU M X, GE R D, et al. LncRNA-42060 regulates tamoxifen sensitivity and tumor development via regulating the miR-204-5p/SOX4 axis in canine mammary gland tumor cells[J]. Front Vet Sci, 2021, 8:654694. |
[41] | NISHIYA A T, MASSOCO C O, FELIZZOLA C R, et al. Comparative aspects of canine melanoma[J]. Vet Sci, 2016, 3(1):7. |
[42] | LAGARRIGUE S, LORTHIOIS M, DEGALEZ F, et al. LncRNAs in domesticated animals:from dog to livestock species[J]. Mamm Genome, 2022, 33(2):248-270. |
[43] | HITTE C, LE BÉGUEC C, CADIEU E, et al. Genome-wide analysis of long non-coding RNA profiles in canine oral melanomas[J]. Genes, 2019, 10(6):477. |
[44] | PROUTEAU A, MOTTIER S, PRIMOT A, et al. Canine oral melanoma genomic and transcriptomic study defines two molecular subgroups with different therapeutical targets[J]. Cancers, 2022, 14(2):276. |
[45] | RAHMAN M, LAI Y C, HUSNA A A, et al. Micro RNA transcriptome profile in canine oral melanoma[J]. Int J Mol Sci, 2019, 20(19):4832. |
[46] | CHEN H W, LAI Y C, RAHMAN M, et al. Micro RNA differential expression profile in canine mammary gland tumor by next generation sequencing[J]. Gene, 2022, 818:146237. |
[47] | HUSNA A A, RAHMAN M, LAI Y C, et al. Identification of melanoma-specific exosomal miRNAs as the potential biomarker for canine oral melanoma[J]. Pigment Cell Melanoma Res, 2021, 34(6):1062-1073. |
[48] | YANG C M, WANG T H, CHEN H C, et al. Aberrant DNA hypermethylation-silenced SOX21-AS1 gene expression and its clinical importance in oral cancer[J]. Clin Epigenetics, 2016, 8:129. |
[49] | LESSARD L, LIU M, MARZESE D M, et al. The CASC15 long intergenic noncoding RNA locus is involved in melanoma progression and phenotype switching[J]. J Invest Dermatol, 2015, 135(10):2464-2474. |
[50] | NANCE R L, COOPER S J, STARENKI D, et al. Transcriptomic analysis of canine osteosarcoma from a precision medicine perspective reveals limitations of differential gene expression studies[J]. Genes, 2022, 13(4):680. |
[51] | BELAYNEH R, FOURMAN M S, BHOGAL S, et al. Update on osteosarcoma[J]. Curr Oncol Rep, 2021, 23(6):71. |
[52] | SIMPSON S, DUNNING M D, DE BROT S, et al. Comparative review of human and canine osteosarcoma:morphology, epidemiology, prognosis, treatment and genetics[J]. Acta Vet Scand, 2017, 59(1):71. |
[53] | SARVER A L, THAYANITHY V, SCOTT M C, et al. MicroRNAs at the human 14q32 locus have prognostic significance in osteosarcoma[J]. Orphanet J Rare Dis, 2013, 8:7. |
[54] | DAILEY D D, HESS A M, BOUMA G J, et al. MicroRNA expression changes and integrated pathways associated with poor outcome in canine osteosarcoma[J]. Front Vet Sci, 2021, 8:637622. |
[55] | XU Q L, CHENG L, CHEN J Y, et al. RETRACTED ARTICLE:miR-376a inhibits the proliferation and invasion of osteosarcoma by targeting FBXO11[J]. Hum Cell, 2019, 32(3):390-396. |
[56] | HO X D, PHUNG P, LE V Q, et al. Whole transcriptome analysis identifies differentially regulated networks between osteosarcoma and normal bone samples[J]. Exp Biol Med, 2017, 242(18):1802-1811. |
[57] | KIM H, YOO S, ZHOU R J, et al. Oncogenic role of SFRP2 in p53-mutant osteosarcoma development via autocrine and paracrine mechanism[J]. Proc Natl Acad Sci U S A, 2018, 115(47):E11128-E11137. |
[58] | QI P, XU M D, NI S J, et al. Low expression of LOC285194 is associated with poor prognosis in colorectal cancer[J]. J Transl Med, 2013, 11:122. |
[59] | LUO W, HE H B, XIAO W F, et al. MALAT1 promotes osteosarcoma development by targeting TGFA via MIR376A[J]. Oncotarget, 2016, 7(34):54733-54743. |
[60] | PU Y C, WANG J, WANG S Z. Role of autophagy in drug resistance and regulation of osteosarcoma (review)[J]. Mol Clin Oncol, 2022, 16(3):72. |
[61] | XIE W P, CHANG W J, WANG X L, et al. Allicin inhibits osteosarcoma growth by promoting oxidative stress and autophagy via the inactivation of the lncRNA MALAT1-miR-376a-Wnt/β-catenin signaling pathway [J]. Oxid Med Cell Longev, 2022, 2022:4857814. |
[62] | GHAFOURI-FARD S, SHOOREI H, MOHAQIQ M, et al. Exploring the role of non-coding RNAs in autophagy[J]. Autophagy, 2022, 18(5):949-970. |
[63] | ENTEZARI M, TAHERIAZAM A, OROUEI S, et al. LncRNA-miRNA axis in tumor progression and therapy response:an emphasis on molecular interactions and therapeutic interventions[J]. Biomed Pharmacother, 2022, 154:113609. |
[1] | LIU Weiye, HUANG Xuewei. Research Progress of Non-coding RNA in Infectious Bursal Disease Virus Infection [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1488-1498. |
[2] | GAO Long, CHANG Xinyi, LI Cheng, ZHAO Xiaoya, LI Wenjie, FAN Haoqian, MA Jingyun. Construction and Rescue of Recombinant CAV-2 Oncolytic Virus Expressing Exogenous Gene SPAM1 [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1228-1237. |
[3] | TAN Ning, LI Balun, HAN Miao, LI Chenchen, JING Yuanxiang, KOU Zheng, LI Na, PENG Sha, ZHAO Xianjun, HUA Jinlian. Evaluation of Therapeutic Effect of Mitoquionl Mesylate Pretreated Adipose Derived Mesenchymal Stem Cells on Canine Diabetes Mellitus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1328-1344. |
[4] | ZHANG Xinrui, FU Yu, YANG Zhuo, SHEN Wenjuan, TAO Jinzhong. Study of Early Pregnancy Diagnostic Proteins in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 451-460. |
[5] | BI Zhenwei, WANG Wenjie, LIU Yakun, PENG Daxin. Cloning of a New Canine ANP32A and Its Role in Cross-species Infection of Influenza Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 660-669. |
[6] | GUO Yunpeng, NIU Dun, LI Shuang, JIANG Xinghao, ZHANG Lixia, REN Guiping, YIN Jiechao. Study of Long-lasting Hypoglycemic Effect of Canine Fibroblast Growth Factor 21 Using a Mice Model with Type 1 Diabetes Mellitus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 770-784. |
[7] | ZHANG De'an, YANG Ruozhu, LIU Jie, LIU Dewu, DENG Ming, LIU Guangbin, SUN Baoli, GUO Yongqing, LI Yaokun. Expression Analysis of Transcriptome in the Liver of Chuanzhong Black Goats Fed with Silage Neolamarckia Cadamba Substitute for Silage Corn [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 232-244. |
[8] | SHI Lei, MA Yihan, YUAN Zhankui, SUN Yihong, WANG Xiao, ZHANG Bin, QIAO Kangjia. Analysis of Surgical Effect and Complications of Tibial Plateau Leveling Osteotomy for the Treatment of Cranial Cruciate Ligament Disease in Dogs [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3964-3976. |
[9] | ZHONG Hua, SONG Shanshan, SHAO Huanting, ZHAO Yu, KANG Jinwen, WU Yao, SU Renwei. Transcriptome Sequencing Analysis on Canine Pyometra Uterine Tissue [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3383-3392. |
[10] | WANG Jiali, ZHOU Ning, CHEN Xi, YUE Hua, TANG Cheng. Isolation, Identification and Pathogenicity of Canine Adenovirus Type 2 Strain with Natural Deletion in E3 Gene [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2982-2990. |
[11] | MA Tianwen, WANG Yingxue, WANG Minghe, CHI Xinyu, WANG Shu, GAO Li, WEI Chengwei. Clinical Diagnosis, Treatment and Prognosis of Intestinal Lymphadenopathy in Canine [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 3102-3107. |
[12] | YANG Chuang, WU Longfei, LIU Guangbin, LI Yaokun, LIU Dewu, SUN Baoli. Expression Profile and Bioinformatics Analysis of lncRNA and Its Associated ceRNA Networks in Longissimus Dorsi from Lufeng Cattle and Leiqiong Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1951-1963. |
[13] | QIN Xue, SHA Yiwen, YANG Menghao, CAI Rui, PANG Weijun. Advances in Regulation of Non-coding RNA on Mammalian Endometrial Receptivity and Decidualization [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1347-1358. |
[14] | JIA Hongru, YANG Chaoqun, WANG Meng, WU Zhangqing, ZAN Linsen, YANG Wucai. LRTN4RL1-AS Mediates Milk Fat Synthesis in Bovine Mammary Epithelial Cells through miR-27a-3p Targeting PPARγ [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1465-1477. |
[15] | REN Xiaoli, FAN Yuying, HUANGFU Heping, LIU Yun, SHI Dongmei. Effect of GSK126 on Epithelial-mesenchymal Transition of Canine Mammary Tumor Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1721-1729. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||