Acta Veterinaria et Zootechnica Sinica ›› 2023, Vol. 54 ›› Issue (4): 1392-1402.doi: 10.11843/j.issn.0366-6964.2023.04.005
• REVIEW • Previous Articles Next Articles
TIAN Yanhong, YU Jiangxu, JIAO Yuzhou, GAO Dongyang, CAI Xuwang*
Received:
2022-09-19
Online:
2023-04-23
Published:
2023-04-27
CLC Number:
TIAN Yanhong, YU Jiangxu, JIAO Yuzhou, GAO Dongyang, CAI Xuwang. Research Progress on Structural Modification and Its Effects of Salmonella Lipopolysaccharides[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1392-1402.
[1] | LEYMAN B, BOYEN F, VAN PARYS A, et al. Salmonella Typhimurium LPS mutations for use in vaccines allowing differentiation of infected and vaccinated pigs[J]. Vaccine, 2011, 29(20):3679-3685. |
[2] | HOELZER K, MORENO SWITT A I, WIEDMANN M. Animal contact as a source of human non-typhoidal salmonellosis[J]. Vet Res, 2011, 42(1):34. |
[3] | BESSER J M. Salmonella epidemiology:a whirlwind of change[J]. Food Microbiol, 2018, 71:55-59. |
[4] | GUO R X, LI Z Y, JIAO Y, et al. O-polysaccharide is important for Salmonella Pullorum survival in egg albumen, and virulence and colonization in chicken embryos[J]. Avian Pathol, 2017, 46(5):535-540. |
[5] | RAETZ C R H, WHITFIELD C. Lipopolysaccharide endotoxins[J]. Annu Rev Biochem, 2002, 71:635-700. |
[6] | AKIRA S, TAKEDA K. Toll-like receptor signalling[J]. Nat Rev Immunol, 2004, 4(7):499-511. |
[7] | SINGH S P, WILLIAMS Y U, KLEBBA P E, et al. Immune recognition of porin and lipopolysaccharide epitopes of Salmonella Typhimurium in mice[J]. Microb Pathog, 2000, 28(3):157-167. |
[8] | ALDAPA-VEGA G, MORENO-EUTIMIO M A, BERLANGA-TAYLOR A J, et al. Structural variants of Salmonella Typhimurium lipopolysaccharide induce less dimerization of TLR4/MD-2 and reduced pro-inflammatory cytokine production in human monocytes[J]. Mol Immunol, 2019, 111:43-52. |
[9] | STEIMLE A, AUTENRIETH I B, FRICK J S. Structure and function:lipid A modifications in commensals and pathogens[J]. Int J Med Microbiol, 2016, 306(5):290-301. |
[10] | ROSADINI C V, KAGAN J C. Early innate immune responses to bacterial LPS[J]. Curr Opin Immunol, 2017, 44:14-19. |
[11] | BARKER J H, WEISS J P. Detecting lipopolysaccharide in the cytosol of mammalian cells:Lessons from MD-2/TLR4[J]. J Leukoc Biol, 2019, 106(1):127-132. |
[12] | PARK B S, SONG D H, KIM H M, et al. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex[J]. Nature, 2009, 458(7242):1191-1195. |
[13] | VANAJA S K, RUSSO A J, BEHL B, et al. Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation[J]. Cell, 2016, 165(5):1106-1119. |
[14] | HAGAR J A, POWELL D A, AACHOUI Y, et al. Cytoplasmic LPS activates caspase-11:implications in TLR4-independent endotoxic shock[J]. Science, 2013, 341(6151):1250-1253. |
[15] | KAYAGAKI N, WONG M T, STOWE I B, et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4[J]. Science, 2013, 341(6151):1246-1249. |
[16] | SHI J J, ZHAO Y, WANG Y P, et al. Inflammatory caspases are innate immune receptors for intracellular LPS[J]. Nature, 2014, 514(7521):187-192. |
[17] | MATA-HARO V, CEKIC C, MARTIN M, et al. The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4[J]. Science, 2007, 316(5831):1628-1632. |
[18] | REED S G, CARTER D, CASPER C, et al. Correlates of GLA family adjuvants' activities[J]. Semin Immunol, 2018, 39:22-29. |
[19] | HOHMANN E L, OLETTA C A, KILLEEN K P, et al. phoP/phoQ-deleted Salmonella Typhi (Ty800) is a safe and immunogenic single-dose typhoid fever vaccine in volunteers[J]. J Infect Dis, 1996, 173(6):1408-1414. |
[20] | ZHAO Y, ARCE-GORVEL V, CONDE-ÁLVAREZ R, et al. Vaccine development targeting lipopolysaccharide structure modification[J]. Microbes Infect, 2018, 20(9-10):455-460. |
[21] | BERTANI B, RUIZ N. Function and biogenesis of lipopolysaccharides[J]. EcoSal Plus, 2018, 8(1):10. |
[22] | LITTLEJOHN J R, DA SILVA R F, NEALE W A, et al. Structural definition of hSP-D recognition of Salmonella enterica LPS inner core oligosaccharides reveals alternative binding modes for the same LPS[J]. PLoS One, 2018, 13(6):e0199175. |
[23] | MANSFIELD L P, FORSYTHE S J. Demonstration of the Rb1 lipopolysaccharide core structure in Salmonella strains with the monoclonal antibody M105[J]. J Med Microbiol, 2001, 50(4):339-344. |
[24] | ERRIDGE C, BENNETT-GUERRERO E, POXTON I R. Structure and function of lipopolysaccharides[J]. Microbes Infect, 2002, 4(8):837-851. |
[25] | ŠIMOLIŪNAS E, VILKAITYTĖ M, KALINIENE L, et al. Incomplete LPS core-specific Felix01-like virus vB_EcoM_VpaE1[J]. Viruses, 2015, 7(12):6163-6181. |
[26] | YETHON J A, GUNN J S, ERNST R K, et al. Salmonella enterica serovar Typhimurium waaP mutants show increased susceptibility to polymyxin and loss of virulence in vivo[J]. Infect Immun, 2000, 68(8):4485-4491. |
[27] | CONDE-ÁLVAREZ R, ARCE-GORVEL V, GIL-RAMÍREZ Y, et al. Lipopolysaccharide as a target for brucellosis vaccine design[J]. Microb Pathog, 2013, 58:29-34. |
[28] | HARPER M, BOYCE J D, ADLER B. The key surface components of Pasteurella multocida:capsule and lipopolysaccharide[M]//AKTORIES K, ORTH J H C, ADLER B. Pasteurella multocida. Berlin:Springer, 2012:39-51. |
[29] | LETAROV A V, KULIKOV E E. Adsorption of bacteriophages on bacterial cells[J]. Biochemistry (Mosc), 2017, 82(13):1632-1658. |
[30] | REEVES P R, CUNNEEN M M, LIU B, et al. Genetics and evolution of the Salmonella galactose-initiated set of O antigens[J]. PLoS One, 2013, 8(7):e69306. |
[31] | FIERER J, GUINEY D G. Diverse virulence traits underlying different clinical outcomes of Salmonella infection[J]. J Clin Invest, 2001, 107(7):775-780. |
[32] | LIU D, VERMA N K, ROMANA L K, et al. Relationships among the rfb regions of Salmonella serovars A, B, and D[J]. J Bacteriol, 1991, 173(15):4814-4819. |
[33] | LIU B, KNIREL Y A, FENG L, et al. Structural diversity in Salmonella O antigens and its genetic basis[J]. FEMS Microbiol Rev, 2014, 38(1):56-89. |
[34] | KONG Q K, YANG J, LIU Q, et al. Effect of deletion of genes involved in lipopolysaccharide core and O-antigen synthesis on virulence and immunogenicity of Salmonella enterica serovar Typhimurium[J]. Infect Immun, 2011, 79(10):4227-4239. |
[35] | JIAO Y, XIA Z M, ZHOU X H, et al. Signature-tagged mutagenesis screening revealed the role of lipopolysaccharide biosynthesis gene rfbH in smooth-to-rough transition in Salmonella Enteritidis[J]. Microbiol Res, 2018, 212-213:75-79. |
[36] | KIM M, KIM S, PARK B, et al. Core lipopolysaccharide-specific phage SSU5 as an auxiliary component of a phage cocktail for Salmonella biocontrol[J]. Appl Environ Microbiol, 2014, 80(3):1026-1034. |
[37] | WHITFIELD C, KANIUK N, FRIRDICH E. Molecular insights into the assembly and diversity of the outer core oligosaccharide in lipopolysaccharides from Escherichia coli and Salmonella[J]. J Endotoxin Res, 2003, 9(4):244-249. |
[38] | HEINRICHS D E, YETHON J A, WHITFIELD C. Molecular basis for structural diversity in the core regions of the lipopolysaccharides of Escherichia coli and Salmonella enterica[J]. Mol Microbiol, 1998, 30(2):221-232. |
[39] | PUTKER F, BOS M P, TOMMASSEN J. Transport of lipopolysaccharide to the Gram-negative bacterial cell surface[J]. FEMS Microbiol Rev, 2015, 39(6):985-1002. |
[40] | BITTNER L M, ARENDS J, NARBERHAUS F. When, how and why?Regulated proteolysis by the essential FtsH protease in Escherichia coli[J]. Biol Chem, 2017, 398(5-6):625-635. |
[41] | KATZ C, RON E Z. Dual role of FtsH in regulating lipopolysaccharide biosynthesis in Escherichia coli[J]. J Bacteriol, 2008, 190(21):7117-7122. |
[42] | MAHALAKSHMI S, SUNAYANA M R, SAISREE L, et al. yciM is an essential gene required for regulation of lipopolysaccharide synthesis in Escherichia coli[J]. Mol Microbiol, 2014, 91(1):145-157. |
[43] | EMIOLA A, ANDREWS S S, HELLER C, et al. Crosstalk between the lipopolysaccharide and phospholipid pathways during outer membrane biogenesis in Escherichia coli[J]. Proc Natl Acad Sci USA, 2016, 113(11):3108-3113. |
[44] | MI W, LI Y Y, YOON S H, et al. Structural basis of MsbA-mediated lipopolysaccharide transport[J]. Nature, 2017, 549(7671):233-237. |
[45] | SILHAVY T J, KAHNE D, WALKER S. The bacterial cell envelope[J]. Cold Spring Harb Perspect Biol, 2010, 2(5):a000414. |
[46] | HICKS G, JIA Z C. Structural basis for the lipopolysaccharide export activity of the bacterial lipopolysaccharide transport system[J]. Int J Mol Sci, 2018, 19(9):2680. |
[47] | LI Y Y, ORLANDO B J, LIAO M F. Structural basis of lipopolysaccharide extraction by the LptB2FGC complex[J]. Nature, 2019, 567(7749):486-490. |
[48] | KANG X L, YANG Y, MENG C, et al. Safety and protective efficacy of Salmonella Pullorum spiC and rfaH deletion rough mutant as a live attenuated DIVA vaccine candidate[J]. Poult Sci, 2022, 101(3):101655. |
[49] | SENEVIRATHNE A, HEWAWADUGE C, LEE J H. Assessing an O-antigen deficient, live attenuated Salmonella Gallinarium strain that is DIVA compatible, environmentally safe, and protects chickens against fowl typhoid[J]. Dev Comp Immunol, 2022, 133:104433. |
[50] | GUO R X, JIAO Y, LI Z Y, et al. Safety, protective immunity, and DIVA capability of a rough mutant Salmonella Pullorum vaccine candidate in broilers[J]. Front Microbiol, 2017, 8:547. |
[51] | KANTELE A, PAKKANEN S H, SIITONEN A, et al. Live oral typhoid vaccine Salmonella Typhi Ty21a-a surrogate vaccine against non-typhoid Salmonella?[J]. Vaccine, 2012, 30(50):7238-7245. |
[52] | MACLENNAN C A. Antibodies and protection against invasive Salmonella disease[J]. Front Immunol, 2014, 5:635. |
[53] | DALBY T, RASMUSSEN E, SCHIELLERUP P, et al. Development of an LPS-based ELISA for diagnosis of Yersinia enterocolitica O:3 infections in Danish patients:a follow-up study[J]. BMC Microbiol, 2017, 17(1):125. |
[54] | FALKENHORST G, CEPER T H, STRID M A, et al. Serological follow-up after non-typhoid Salmonella infection in humans using a mixed lipopolysaccharide ELISA[J]. Int J Med Microbiol, 2013, 303(8):533-538. |
[55] | SIMPSON B W, TRENT M S. Pushing the envelope:LPS modifications and their consequences[J]. Nat Rev Microbiol, 2019, 17(7):403-416. |
[1] | QIU Meiyu, ZHANG Xuemei, ZHANG Ning, LIU Mingjun. Approach and Application of Prime Editing System [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1345-1355. |
[2] | SU Yiman, YE Jiali, QIU Wenyue, ZHANG Xinting, PANG Xiaoyue, WANG Rongmei, TANG Zhaoxin, SU Rongsheng. Asiatic Acid Alleviates LPS-induced Pyroptosis in Renal Cell by Inhibiting HMGB1/TLR4/NF-κB Pathway in Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1777-1786. |
[3] | ZHANG Xinting, QIU Wenyue, PANG Xiaoyue, SU Yiman, YE Jiali, HUANG Jianjia, ZHOU Shuilian, TANG Zhaoxin, WANG Rongmei, SU Rongsheng. Effect of Asiatic Acid Alleviating Myocardial Injury Caused by Lipopolysaccharide through Inhibiting Oxidative Stress and Ferroptosis in Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1787-1799. |
[4] | WANG Dong, LIU Kexin, HE Yanjun, DENG Shouxiang, LIU Yun, MA Weiming. Effects of Dietary Sodium Humate Supplementation on Liver Tissue Inflammation and Antioxidant Capacity of Salmonella Typhimurium-Infected Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 629-639. |
[5] | LI Zhaolong, KONG Xiangrui, LIN Fengqiang, WANG Xiuping, ZHAO Ran, PENG Xiaoli, CHEN Changsong. Preliminary Study of the Mechanism of Inhibition of Salmonella Typhimurium by Ec-12 Supernatant [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 739-750. |
[6] | QIU Wenyue, SU Yiman, YE Jiali, ZHANG Xinting, PANG Xiaoyue, WANG Rongmei, XIE Zimao, ZHANG Hui, TANG Zhaoxin, SU Rongsheng. Study on Asiatic Acid Alleviates LPS-induced Acute Kidney Injury by Regulating Apoptosis and Autophagy of Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 809-821. |
[7] | ZHANG Ping, ZHUANG Linlin, ZHANG Di, DONG Yongyi, SHENG Zhongwei, WANG Chengming, XU Bu, DOU Xinhong, GONG Jiansen. Research Progress on Molecular Detection Methods of Salmonella [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3217-3229. |
[8] | WANG Jingyu, PAN Yangyang, XU Gengquan, ZHANG Rui, ZHANG Wenlan, WANG Xiaoshan, WU Rentaodi, ZHAO Rigetu, CUI Yan, YU Sijiu. Preparation and Preliminary Application of Yak (Bos Grunniens) Fas-associated Factor 1 Polyclonal Antibody [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3369-3382. |
[9] | ZHANG Qianwen, LIU Yumei, SHI Lihui, LIANG Wenjun, LI Mengyun, WANG Yuqin, ZHANG Ziqiang. Pathological Observation and Drug Sensitivity Analysis of Salmonella Infection in Female Rabbits [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3510-3518. |
[10] | GAO Kangkang, YI Yanyan, ZHAO Yiteng, LIN Pengfei, CHEN Huatao, JIN Yaping. Protective Effect of Endoplasmic Reticulum Stress Preadaptation on LPS-Induced Inflammatory Response in Goat Endometrial Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3546-3556. |
[11] | CHEN Songbiao, SHANG Ke, DU Fuxi, YU Zuhua, LI Jing, JIA Yanyan, LIAO Chengshui, ZHANG Chunjie, DING Ke, CHENG Xiangchao. Research Process of Assembly, Structural Features, and Secretion Regulatory Networks of Type VI Secretion System in Salmonella [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2252-2263. |
[12] | SUN Yufan, YU Panyuan, CHEN Hongyu, TAN Yiqing, CHEN Xiabing, ZHANG Tengfei, GAO Ting, ZHOU Rui, LI Lu. Evaluation of the Efficacy of Potassium Diformate in the Prevention of Salmonella Infection and the Effect on Intestinal Flora [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 2101-2113. |
[13] | QIN Lei, WU Huimin, XU Qiqi, CHEN Wanzhao, WANG Dong, LI Hongbo, XIA Panpan, LIU Zepeng, XIA Lining. Effect of Exogenous Drug-Resistant Salmonella Typhimurium on Intestinal Flora in Healthy Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 2158-2169. |
[14] | YAO Min, SHI Bomei, HUANG Tinghua. A Preliminary Research of the Regulation of MAPK-CDK6-RB Pathway by Salmonella SptP in Macrophages [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1187-1198. |
[15] | JIANG Zenghai, TENG Lin, HE Anwen, LIU Yanyan, YUE Min, HE Qigai. Genomic Analysis of Salmonella Typhimurium Isolates and Salmonella Serotype 4, [5], 12: i:- Isolates from Pig-borne Food Chain [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1199-1209. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||