[1] |
王功民, 田克恭. 非洲猪瘟[M]. 北京:中国农业出版社, 2010.WANG G M, TIAN K G. African swine fever[M]. Beijing:China Agriculture Press, 2010. (in Chinese)
|
[2] |
顾永远, 钱忠辉, 张华弟, 等. 非洲猪瘟流行特点及临床检测[J]. 国外畜牧学(猪与禽), 2020, 40(12):48-50.GU Y Y, QIAN Z H, ZHANG H D, et al. Epidemic characteristics and clinical detection of African swine fever[J]. Animal Science Abroad (Pigs and Poultry), 2020, 40(12):48-50. (in Chinese)
|
[3] |
GALINDO I, ALONSO C. African swine fever virus:a review[J]. Viruses, 2017, 9(5):103.
|
[4] |
SÁNCHEZ-CORDÓN P J, MONTOYA M, REIS A L, et al. African swine fever:a re-emerging viral disease threatening the global pig industry[J]. Vet J, 2018, 233:41-48.
|
[5] |
王清华, 任炜杰, 包静月, 等. 我国首例非洲猪瘟的确诊[J]. 中国动物检疫, 2018, 35(9):1-4.WANG Q H, REN W J, BAO J Y, et al. The first outbreak of African swine fever was confirmed in China[J]. China Animal Health Inspection, 2018, 35(9):1-4. (in Chinese)
|
[6] |
GE S Q, LE J M, FAN X X, et al. Molecular characterization of African swine fever virus, China, 2018[J]. Emerg Infect Dis, 2018, 24(11):2131-2133.
|
[7] |
ALONSO C, BORCA M, DIXON L, et al. ICTV virus taxonomy profile:Asfarviridae[J]. J Gen Virol, 2018, 99(5):613-614.
|
[8] |
谢春芳, 于瑞嵩, 董世娟, 等. 非洲猪瘟病毒的形态结构特征[J]. 国外畜牧学(猪与禽), 2021, 41(2):37-41.XIE C F, YU R S, DONG S J, et al. Morphological and structural characteristics of African swine fever virus[J]. Animal Science Abroad (Pigs and Poultry), 2021, 41(2):37-41. (in Chinese)
|
[9] |
GAUDREAULT N N, MADDEN D W, WILSON W C, et al. African swine fever virus:an emerging DNA arbovirus[J]. Front Vet Sci, 2020, 7:215.
|
[10] |
赵向红. 非洲猪瘟病毒主要蛋白研究概述[J]. 中国猪业, 2022, 17(2):92-94, 98.ZHAO X H. Overview of the research on the main proteins of African swine fever virus[J]. China Swine Industry, 2022, 17(2):92-94, 98. (in Chinese)
|
[11] |
张 锦, 陈 艳, 邹剑文, 等. 非洲猪瘟病毒p30蛋白的原核表达及间接ELISA抗体检测方法的建立与应用[J]. 畜牧与兽医, 2022, 54(3):83-90.ZHANG J, CHEN Y, ZOU J W, et al. Prokaryotic expression of p30 protein and establishment and application of an indirect ELISA antibody detection method for ASFV[J]. Animal Husbandry & Veterinary Medicine, 2022, 54(3):83-90. (in Chinese)
|
[12] |
徐黎晖, 迟立超, 王雨佳, 等. 非洲猪瘟病毒P30蛋白的真核表达及间接ELISA抗体检测方法的建立[J]. 中国预防兽医学报, 2021, 43(4):382-387.XU L H, CHI L C, WANG Y J, et al. Eukaryotic expression of P30 gene of African swine fever virus and establishment of indirect ELISA for antibody detection[J]. Chinese Journal of Preventive Veterinary Medicine, 2021, 43(4):382-387. (in Chinese)
|
[13] |
于学祥, 陈晓雨, 李栋凡, 等. 非洲猪瘟病毒无标签p30-ELISA抗体检测方法的建立及应用[J]. 畜牧兽医学报, 2022, 53(5):1517-1526.YU X X, CHEN X Y, LI D F, et al. Establishment and application of an indirect ELISA antibody detection method based on African swine fever virus tag-free p30 protein[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(5):1517-1526. (in Chinese)
|
[14] |
闫俊平, 曹东林. 液相芯片技术在传染病快速诊断中的应用[J]. 现代医院, 2017, 17(12):1782-1785.YAN J P, CAO D L. The application of liquichip detection technology in rapid diagnosis of infectious diseases[J]. Modern Hospital, 2017, 17(12):1782-1785. (in Chinese)
|
[15] |
惠国华. 液相芯片技术在生物医学工程领域的研究进展[J]. 生物医学工程学杂志, 2010, 27(6):1406-1409.HUI G H. Progress in research on LiquiChip technology in biomedical engineering[J]. Journal of Biomedical Engineering, 2010, 27(6):1406-1409. (in Chinese)
|
[16] |
姚维彬. 非洲猪瘟防控形势及防范措施[J]. 今日畜牧兽医, 2022, 38(10):24-25.YAO W B. Prevention and control situation and preventive measures of African swine fever[J]. Today Animal Husbandry and Veterinary, 2022, 38(10):24-25. (in Chinese)
|
[17] |
陈铮铮, 吕火烊. 液相芯片技术进展及在检验医学中应用[J]. 现代实用医学, 2021, 33(8):981-983.CHEN Z Z, LV H Y. Advances in liquid phase microarray technology and its application in laboratory medicine[J]. Modern Practical Medicine, 2021, 33(8):981-983. (in Chinese)
|
[18] |
王 莹, 刘雨田, 张齐政, 等. 液相芯片技术在动物疫病诊断中的应用[J]. 动物医学进展, 2020, 41(9):115-118.WANG Y, LIU Y T, ZHANG Q Z, et al. Application of liquichip technology in diagnoses of animal infectious diseases[J]. Progress in Veterinary Medicine, 2020, 41(9):115-118. (in Chinese)
|
[19] |
王文红, 熊御云, 焦志军. 液相芯片技术在临床检验中的应用进展[J]. 中华检验医学杂志, 2014, 37(8):570-572.WANG W H, XIONG Y Y, JIAO Z J, et al. Clinical application and prospect of suspension array technology[J]. Chinese Journal of Laboratory Medicine, 2014, 37(8):570-572. (in Chinese)
|
[20] |
KURIAKOSE T, HILT D A, JACKWOOD M W. Detection of avian influenza viruses and differentiation of H5, H7, N1, and N2 subtypes using a multiplex microsphere assay[J]. Avian Dis, 2012, 56(1):90-96.
|
[21] |
AKHRAS M S, PETTERSSON E, DIAMOND L, et al. The sequencing bead array (SBA), a next-generation digital suspension array[J]. PLoS One, 2013, 8(10):e76696.
|
[22] |
杨 帆, 魏小果. 液相芯片技术在胃癌多靶标基因联合检测中的应用[J]. 细胞与分子免疫学杂志, 2018, 34(8):740-745.YANG F, WEI X G. Application of liquid-phase microarray technology in the combined multi-target gene detection of gastric cancer[J]. Chinese Journal of Cellular and Molecular Immunology, 2018, 34(8):740-745. (in Chinese)
|
[23] |
RESLOVA N, MICHNA V, KASNY M, et al. xMAP technology:applications in detection of pathogens[J]. Front Microbiol, 2017, 8:55.
|
[24] |
CHRISTOPHER-HENNINGS J, ARAUJO K P C, SOUZA C J H, et al. Opportunities for bead-based multiplex assays in veterinary diagnostic laboratories[J]. J Vet Diagn Invest, 2013, 25(6):671-691.
|
[25] |
KARANIKOLA S N, KRVCKEN J, RAMVNKE S, et al. Development of a multiplex fluorescence immunological assay for the simultaneous detection of antibodies against Cooperia oncophora, Dictyocaulus viviparus and Fasciola hepatica in cattle[J]. Parasit Vectors, 2015, 8:335.
|
[26] |
WANG H Y, WU S Q, JIANG L, et al. Establishment and optimization of a liquid bead array for the simultaneous detection of ten insect-borne pathogens[J]. Parasit Vectors, 2018, 11(1):442.
|
[27] |
李云峰, 石 静, 马 旭, 等. 基孔肯亚热、克里米亚-刚果出血热、裂谷热病毒核酸液相芯片检测方法的建立[J]. 中国国境卫生检疫杂志, 2015, 38(4):229-234.LI Y F, SHI J, MA X, et al. Development of a liquichip method for detecting Chikungunya virus, Crimean Congo hemorrhagic fever virus and rift valley fever virus[J]. Chinese Journal of Frontier Health and Quarantine, 2015, 38(4):229-234. (in Chinese)
|