[1] |
SEREDA A D, KAZAKOVA A S, NAMSRAYN S G, et al. The attenuated ASFV strains MK-200 and FK-32/135 as possible models for investigation of protective immunity by ASFV infection[J]. PLoS One, 2022, 17(7):e0270641.
|
[2] |
CHAPMAN D A G, TCHEREPANOV V, UPTON C, et al. Comparison of the genome sequences of non-pathogenic and pathogenic African swine fever virus isolates[J]. J Gen Virol, 2008, 89(2):397-408.
|
[3] |
ALEJO A, MATAMOROS T, GUERRA M, et al. A proteomic atlas of the African swine fever virus particle[J]. J Virol, 2018, 92(23):e01293-18.
|
[4] |
SALAS M L, ANDRÉS G. African swine fever virus morphogenesis[J]. Virus Res, 2013, 173(1):29-41.
|
[5] |
KEßLER C, FORTH J H, KEIL G M, et al. The intracellular proteome of African swine fever virus[J]. Sci Rep, 2018, 8(1):14714.
|
[6] |
FAN Y Q, CHEN W Y, JIANG C G, et al. Host responses to live-attenuated ASFV (HLJ/18-7GD)[J]. Viruses, 2022, 14(9):2003.
|
[7] |
TRAN X H, PHUONG L T T, HUY N Q, et al. Evaluation of the safety profile of the ASFV vaccine candidate ASFV-G-Δ177L[J]. Viruses, 2022, 14(5):896.
|
[8] |
GÓMEZ-VILLAMANDOS J C, BAUTISTA M J, SÁNCHEZ-CORDÓN P J, et al. Pathology of African swine fever:the role of monocyte-macrophage[J]. Virus Res, 2013, 173(1):140-149.
|
[9] |
AIT-ALI T, WILSON A D, WESTCOTT D G, et al. Innate immune responses to replication of porcine reproductive and respiratory syndrome virus in isolated swine alveolar macrophages[J]. Viral Immunol, 2007, 20(1):105-118.
|
[10] |
XIE C, WANG B Y, SHEN Z J, et al. Validation of the reference genes for the gene expression studies in different cell lines of pig[J]. Biomed Res Int, 2021, 2021:5364190.
|
[11] |
温灵燕. PK15细胞全悬浮摇瓶培养工艺初探[J]. 福建畜牧兽医, 2022, 44(1):1-3.WEN L Y. Preliminary study on suspension culture of PK15 cells in shaker flask[J]. Fujian Journal of Animal Husbandry and Veterinary Medicine, 2022, 44(1):1-3. (in Chinese)
|
[12] |
CARRASCOSA A L, BUSTOS M J, DE LEON P. Methods for growing and titrating African swine fever virus:field and laboratory samples[J]. Curr Protoc Cell Biol, 2011, doi:10. 1002/0471143030. cb2614s53.
|
[13] |
GAUDREAULT N N, MADDEN D W, WILSON W C, et al. African swine fever virus:an emerging DNA arbovirus[J]. Front Vet Sci, 2020, 7:215.
|
[14] |
VALDEIRA M L, BERNARDES C, CRUZ B, et al. Entry of African swine fever virus into Vero cells and uncoating[J]. Vet Microbiol, 1998, 60(2-4):131-140.
|
[15] |
TABARÉS E, OLIVARES I, SANTURDE G, et al. African swine fever virus DNA:deletions and additions during adaptation to growth in monkey kidney cells[J]. Arch Virol, 1987, 97(3-4):333-346.
|
[16] |
ENJUANES L, CARRASCOSA A L, MORENO M A, et al. Titration of African swine fever (ASF) virus[J]. J Gen Virol, 1976, 32(3):471-477.
|
[17] |
KRUG P W, HOLINKA L G, O'DONNELL V, et al. The progressive adaptation of a Georgian isolate of African swine fever virus to Vero cells leads to a gradual attenuation of virulence in swine corresponding to major modifications of the viral genome[J]. J Virol, 2015, 89(4):2324-2332.
|
[18] |
WANG T, WANG L, HAN Y, et al. Adaptation of African swine fever virus to HEK293T cells[J]. Transbound Emerg Dis, 2021, 68(5):2853-2866.
|
[19] |
PORTUGAL R, GOATLEY L C, HUSMANN R, et al. A porcine macrophage cell line that supports high levels of replication of OURT88/3, an attenuated strain of African swine fever virus[J]. Emerg Microbes Infect, 2020, 9(1):1245-1253.
|
[20] |
BORCA M V, RAI A, RAMIREZ-MEDINA E, et al. A cell culture-adapted vaccine virus against the current African swine fever virus pandemic strain[J]. J Virol, 2021, 95(14):e0012321.
|
[21] |
MASUJIN K, KITAMURA T, KAMEYAMA K I, et al. An immortalized porcine macrophage cell line competent for the isolation of African swine fever virus[J]. Sci Rep, 2021, 11(1):4759.
|
[22] |
VENTRE M, NETTI P A. Engineering cell instructive materials to control cell fate and functions through material cues and surface patterning[J]. ACS Appl Mater Interfaces, 2016, 8(24):14896-14908.
|