[1] |
TAKAMATSU H H, DENYER M S, LACASTA A, et al. Cellular immunity in ASFV responses[J]. Virus Res, 2013, 173(1):110-121.
|
[2] |
ESCRIBANO J M, GALINDO I, ALONSO C. Antibody-mediated neutralization of African swine fever virus:myths and facts[J]. Virus Res, 2013, 173(1):101-109.
|
[3] |
REIS A L, NETHERTON C, DIXON L K. Unraveling the armor of a killer:evasion of host defenses by African swine fever virus[J]. J Virol, 2017, 91(6):e02338-16.
|
[4] |
LITHGOW P, TAKAMATSU H, WERLING D, et al. Correlation of cell surface marker expression with African swine fever virus infection[J]. Vet Microbiol, 2014, 168(2-4):413-419.
|
[5] |
FRANZONI G, GRAHAM S P, GIUDICI S D, et al. Characterization of the interaction of African swine fever virus with monocytes and derived macrophage subsets[J]. Vet Microbiol, 2017, 198:88-98.
|
[6] |
NEILAN J G, ZSAK L, LU Z, et al. Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection[J]. Virology, 2004, 319(2):337-342.
|
[7] |
GALINDO I, CUESTA-GEIJO M A, HLAVOVA K, et al. African swine fever virus infects macrophages, the natural host cells, via clathrin-and cholesterol-dependent endocytosis[J]. Virus Res, 2015, 200(1):45-55.
|
[8] |
ANDRÉS G. African swine fever virus gets undressed:new insights on the entry pathway[J]. J Virol, 2017, 91(4):e01906-16.
|
[9] |
HERNÁEZ B, GUERRA M, SALAS M L, et al. African swine fever virus undergoes outer envelope disruption, capsid disassembly and inner envelope fusion before core release from multivesicular endosomes[J]. PLoS Pathog, 2016, 12(4):e1005595.
|
[10] |
SÁNCHEZ E G, QUINTAS A, PÉREZ-NÚÑEZ D, et al. African swine fever virus uses macropinocytosis to enter host cells[J]. PLoS Pathog, 2012, 8(6):e1002754.
|
[11] |
REVILLA Y, PÉREZ-NÚÑEZ D, RICHT J A. African swine fever virus biology and vaccine approaches[J]. Adv Virus Res, 2018, 100:41-74.
|
[12] |
GAUDREAULT N N, MADDEN D W, WILSON W C, et al. African swine fever virus:an emerging DNA arbovirus[J]. Front Vet Sci, 2020, 7:215.
|
[13] |
JAING C, ROWLAND R R R, ALLEN J E, et al. Gene expression analysis of whole blood RNA from pigs infected with low and high pathogenic African swine fever viruses[J]. Sci Rep, 2017, 7(1):10115.
|
[14] |
FERREIRA C. Expression of ubiquitin, actin, and actin-like genes in African swine fever virus infected cells[J]. Virus Res, 1996, 44(1):11-21.
|
[15] |
BARRADO-GIL L, GALINDO I, MARTÍNEZ-ALONSO D, et al. The ubiquitin-proteasome system is required for African swine fever replication[J]. PLoS One, 2017, 12(12):e0189741.
|
[16] |
HINGAMP P M, ARNOLD J E, MAYER R J, et al. A ubiquitin conjugating enzyme encoded by African swine fever virus[J]. EMBO J, 1992, 11(1):361-366.
|
[17] |
LEWIS T, ZSAK L, BURRAGE T G, et al. An African swine fever virus ERV1-ALR homologue, 9GL, affects virion maturation and viral growth in macrophages and viral virulence in swine[J]. J Virol, 2000, 74(3):1275-1285.
|
[18] |
O'DONNELL V, HOLINKA L G, KRUG P W, et al. African swine fever virus georgia 2007 with a deletion of virulence-associated gene 9GL (B119L), when administered at low doses, leads to virus attenuation in swine and induces an effective protection against homologous challenge[J]. J Virol, 2015, 89(16):8556-8566.
|
[19] |
GOLDING J P, GOATLEY L, GOODBOURN S, et al. Sensitivity of African swine fever virus to type I interferon is linked to genes within multigene families 360 and 505[J]. Virology, 2016, 493:154-161.
|
[20] |
AFONSO C L, PICCONE M E, ZAFFUTO K M, et al. African swine fever virus multigene family 360 and 530 genes affect host interferon response[J]. J Virol, 2004, 78(4):1858-1864.
|
[21] |
YANG K D, XUE Y, NIU H, et al. African swine fever virus MGF360-11L negatively regulates cGAS-STING-mediated inhibition of type I interferon production[J]. Vet Res, 2022, 53(1):7.
|
[22] |
王 洋, 崔 帅, 鑫 婷, 等. 非洲猪瘟病毒MGF360-14L靶向MAVS抑制Ⅰ型干扰素的产生[J]. 畜牧兽医学报, 2022, 53(9):3272-3278.WANG Y, CUI S, XIN T, et al. ASFV MGF360-14L interacts with MAVS and inhibit the expression of type Ⅰ interferon[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9):3272-3278. (in Chinese)
|
[23] |
陈达年, 马旭升, 代军飞, 等. 非洲猪瘟病毒多基因家族MGF360-13L基因功能的初步研究[J]. 畜牧兽医学报, 2022, 53(12):4419-4428.CHEN D N, MA X S, DAI J F, et al. Preliminary study on the function of MGF360-13L gene of African swine fever virus multigene family[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12):4419-4428. (in Chinese)
|