[1] |
DIXON L K, SUN H, ROBERTS H. African swine fever[J]. Antiviral Res, 2019, 165:34-41.
|
[2] |
WANG F X, ZHANG H, HOU L N, et al. Advance of African swine fever virus in recent years[J]. Res Vet Sci, 2021, 136:535-539.
|
[3] |
GE S Q, LI J M, FAN X X, et al. Molecular characterization of African swine fever virus, China, 2018[J]. Emerg Infect Dis, 2018, 24(11):2131-2133.
|
[4] |
URBANO A C, FERREIRA F. African swine fever control and prevention:an update on vaccine development[J]. Emerg Microbes Infect, 2022, 11(1):2021-2033.
|
[5] |
DIXON L K, CHAPMAN D A G, NETHERTON C L, et al. African swine fever virus replication and genomics[J]. Virus Res, 2013, 173(1):3-14.
|
[6] |
WANG G G, XIE M J, WU W, et al. Structures and functional diversities of ASFV proteins[J]. Viruses, 2021, 13(11):2124.
|
[7] |
AKAIKE T. Role of free radicals in viral pathogenesis and mutation[J]. Rev Med Virol, 2001, 11(2):87-101.
|
[8] |
FORMAN H J, TORRES M. Redox signaling in macrophages[J]. Mol Aspects Med, 2001, 22(4-5):189-216.
|
[9] |
REDREJO-RODRÍGUEZ M, GARCÍA-ESCUDERO R, YÁÑEZ-MUÑOZ R J, et al. African swine fever virus protein pE296R is a DNA repair apurinic/apyrimidinic endonuclease required for virus growth in swine macrophages[J]. J Virol, 2006, 80(10):4847-4857.
|
[10] |
REDREJO-RODRÍGUEZ M, ISHCHENKO A A, SAPARBAEV M K, et al. African swine fever virus AP endonuclease is a redox-sensitive enzyme that repairs alkylating and oxidative damage to DNA[J]. Virology, 2009, 390(1):102-109.
|
[11] |
OLIVEROS M, YÁÑEZ R J, SALAS M L, et al. Characterization of an African swine fever virus 20-kDa DNA polymerase involved in DNA repair[J]. J Biol Chem, 1997, 272(49):30899-30910.
|
[12] |
YÁÑEZ R J, VIÑUELA E. African swine fever virus encodes a DNA ligase[J]. Virology, 1993, 193(1):531-536.
|
[13] |
CHEN Y Q, LIU H H, YANG C, et al. Structure of the error-prone DNA ligase of African swine fever virus identifies critical active site residues[J]. Nat Commun, 2019, 10(1):387.
|
[14] |
WAN Y, SHI Z W, PENG G, et al. Development and application of a colloidal-gold dual immunochromatography strip for detecting African swine fever virus antibodies[J]. Appl Microbiol Biotechnol, 2022, 106(2):799-810.
|
[15] |
PETROVAN V, MURGIA M V, WU P, et al. Epitope mapping of African swine fever virus (ASFV) structural protein, p54[J]. Virus Res, 2020, 279:197871.
|
[16] |
HAMERS-CASTERMAN C, ATARHOUCH T, MUYLDERMANS S, et al. Naturally occurring antibodies devoid of light chains[J]. Nature, 1993, 363(6428):446-448.
|
[17] |
MUYLDERMANS S. Nanobodies:natural single-domain antibodies[J]. Annu Rev Biochem, 2013, 82:775-797.
|
[18] |
MUYLDERMANS S. Applications of nanobodies[J]. Annu Rev Anim Biosci, 2021, 9:401-421.
|
[19] |
XU J L, XU K, JUNG S, et al. Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants[J]. Nature, 2021, 595(7866):278-282.
|
[20] |
HE L, TAI W B, LI J F, et al. Enhanced ability of oligomeric nanobodies targeting MERS coronavirus receptor-binding domain[J]. Viruses, 2019, 11(2):166.
|
[21] |
HARMSEN M M, FIJTEN H P D, DEKKER A, et al. Passive immunization of pigs with bispecific llama single-domain antibody fragments against foot-and-mouth disease and porcine immunoglobulin[J]. Vet Microbiol, 2008, 132(1-2):56-64.
|
[22] |
CARDOSO F M, IBAÑEZ L I, VAN DEN HOECKE S, et al. Single-domain antibodies targeting neuraminidase protect against an H5N1 influenza virus challenge[J]. J Virol, 2014, 88(15):8278-8296.
|
[23] |
ZHU M, GONG X, HU Y H, et al. Streptavidin-biotin-based directional double Nanobody sandwich ELISA for clinical rapid and sensitive detection of influenza H5N1[J]. J Transl Med, 2014, 12:352.
|
[24] |
ZHAO J K, ZHU J H, WANG Y, et al. A simple nanobody-based competitive ELISA to detect antibodies against African swine fever virus[J]. Virol Sin, 2022, 37(6):922-933.
|
[25] |
ZHAO H J, REN J H, WU S Y, et al. HRP-conjugated-nanobody-based cELISA for rapid and sensitive clinical detection of ASFV antibodies[J]. Appl Microbiol Biotechnol, 2022, 106(11):4269-4285.
|
[26] |
SHENG Y M, WANG K, LU Q Z, et al. Nanobody-horseradish peroxidase fusion protein as an ultrasensitive probe to detect antibodies against Newcastle disease virus in the immunoassay[J]. J Nanobiotechnol, 2019, 17(1):35.
|
[27] |
刘青源. 基于纳米抗体-HRP融合蛋白鸡血清中抗NDV抗体竞争ELISA检测方法的建立[D]. 杨凌:西北农林科技大学, 2019.LIU Q Y. Establishment of a competitive ELISA assay for anti-NDV antibody in chicken serum based on nanobody-HRP fusion protein[D]. Yangling: Northwest A&F University, 2019. (in Chinese)
|
[28] |
刘红亮. 猪繁殖与呼吸综合征病毒Nsp9蛋白纳米抗体的筛选及其抗病毒功能研究[D]. 杨凌:西北农林科技大学, 2016.LIU H L. Isolation and antiviral activities analysis of porcine peproductive and respiratory syndrome virus Nsp9- specific nanobodies[D]. Yangling: Northwest A&F University, 2016. (in Chinese)
|
[29] |
SUN E C, ZHANG Z J, WANG Z L, et al. Emergence and prevalence of naturally occurring lower virulent African swine fever viruses in domestic pigs in China in 2020[J]. Sci China Life Sci, 2021,64(5):752-765.
|
[30] |
SUN E C, HUANG L Y, ZHANG X F, et al. Genotype I African swine fever viruses emerged in domestic pigs in China and caused chronic infection[J]. Emerg Microbes Infect, 2021, 10(1):2183-2193.
|
[31] |
DUAN H, CHEN X, ZHAO J K, et al. Development of a nanobody-based competitive enzyme-linked immunosorbent assay for efficiently and specifically detecting antibodies against genotype 2 porcine reproductive and respiratory syndrome viruses[J]. J Clin Microbiol, 2021, 59(12):e0158021.
|
[32] |
MU Y, JIA C Y, ZHENG X, et al. A nanobody-horseradish peroxidase fusion protein-based competitive ELISA for rapid detection of antibodies against porcine circovirus type 2[J]. J Nanobiotechnol, 2021, 19(1):34.
|
[33] |
LU Q Z, LI X X, ZHAO J K, et al. Nanobody-horseradish peroxidase and-EGFP fusions as reagents to detect porcine parvovirus in the immunoassays[J]. J Nanobiotechnol, 2020, 18(1):7.
|
[34] |
JI P P, ZHU J H, LI X X, et al. Fenobody and RANbody-based sandwich enzyme-linked immunosorbent assay to detect Newcastle disease virus[J]. J Nanobiotechnol, 2020, 18(1):44.
|