[1] |
PENRITH M L, BASTOS A D, ETTER E M C, et al. Epidemiology of African swine fever in Africa today:Sylvatic cycle versus socio-economic imperatives[J]. Transbound Emerg Dis, 2019, 66(2):672-686.
|
[2] |
GAUDREAULT N N, RICHT J A. Subunit vaccine approaches for African swine fever virus[J]. Vaccines, 2019, 7(2):56.
|
[3] |
KARGER A, PÉREZ-NÚÑEZ D, URQUIZA J, et al. An update on African swine fever virology[J]. Viruses, 2019, 11(9):864.
|
[4] |
DIXON L K, SUN H, ROBERTS H. African swine fever[J]. Antiviral Res, 2019, 165:34-41.
|
[5] |
DIXON L K, STAHL K, JORI F, et al. African swine fever epidemiology and control[J]. Annu Rev Anim Biosci, 2020, 8:221-246.
|
[6] |
DIXON L K, CHAPMAN D A G, NETHERTON C L, et al. African swine fever virus replication and genomics[J]. Virus Res, 2013, 173(1):3-14.
|
[7] |
KOONIN E V, YUTIN N. Evolution of the large nucleocytoplasmic DNA viruses of eukaryotes and convergent origins of viral gigantism[J]. Adv Virus Res, 2019, 103:167-202.
|
[8] |
ANDRÉS G, CHARRO D, MATAMOROS T, et al. The cryo-EM structure of African swine fever virus unravels a unique architecture comprising two icosahedral protein capsids and two lipoprotein membranes[J]. J Biol Chem, 2020, 295(1):1-12.
|
[9] |
WANG N, ZHAO D M, WANG J L, et al. Architecture of African swine fever virus and implications for viral assembly[J]. Science, 2019, 366(6465):640-644.
|
[10] |
ALEJO A, MATAMOROS T, GUERRA M, et al. A proteomic atlas of the African swine fever virus particle[J]. J Virol, 2018, 92(23):e01293-18.
|
[11] |
RODRÍGUEZ J M, SALAS M L. African swine fever virus transcription[J]. Virus Res, 2013, 173(1):15-28.
|
[12] |
CACKETT G, SYKORA M, WERNER F. Transcriptome view of a killer:African swine fever virus[J]. Biochem Soc Trans, 2020, 48(4):1569-1581.
|
[13] |
SUAREZ C, ANDRES G, KOLOVOU A, et al. African swine fever virus assembles a single membrane derived from rupture of the endoplasmic reticulum[J]. Cell Microbiol, 2015, 17(11):1683-1698.
|
[14] |
SALAS M L, ANDRÉS G. African swine fever virus morphogenesis[J]. Virus Res, 2013, 173(1):29-41.
|
[15] |
张 婷, 申超超, 杨 博, 等. 非洲猪瘟病毒解旋酶结构与功能研究进展[J]. 中国兽医科学, 2021, 51(2):135-143.ZHANG T, SHEN C C, YANG B, et al. Research advances on the structure and function of African swine fever virus helicases[J]. Chinese Veterinary Science, 2021, 51(2):135-143. (in Chinese)
|
[16] |
YÁÑEZ R J, RODRÍGUEZ J M, BOURSNELL M, et al. Two putative African swine fever virus helicases similar to yeast ‘DEAH’ pre-mRNA processing proteins and vaccinia virus ATPases D11L and D6R[J]. Gene, 1993, 134(2):161-174.
|
[17] |
侯 景, 申超超, 张大俊, 等. 非洲猪瘟病毒解旋酶D1133L基因序列分析、蛋白结构预测及亚细胞定位[J]. 畜牧兽医学报, 2021, 52(7):1953-1962.HOU J, SHEN C C, ZHANG D J, et al. Gene sequence analysis, protein structure prediction and subcellular localization of African swine fever virus helicase D1133L[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(7):1953-1962. (in Chinese)
|
[18] |
MENG X Z, EMBRY A, ROSE L, et al. Vaccinia virus A6 is essential for virion membrane biogenesis and localization of virion membrane proteins to sites of virion assembly[J]. J Virol, 2012, 86(10):5603-5613.
|
[19] |
GARCÍA-ESCUDERO R, ANDRÉS G, ALMAZÁN F, et al. Inducible gene expression from African swine fever virus recombinants:analysis of the major capsid protein p72[J]. J Virol, 1998, 72(4):3185-3195.
|
[20] |
ANDRÉS G, GARCÍA-ESCUDERO R, VIÑUELA E, et al. African swine fever virus structural protein pE120R is essential for virus transport from assembly sites to plasma membrane but not for infectivity[J]. J Virol, 2001, 75(15):6758-6768.
|
[21] |
MATAMOROS T, ALEJO A, RODRÍGUEZ J M, et al. African swine fever virus protein pe199l mediates virus entry by enabling membrane fusion and core penetration[J]. mBio, 2020, 11(4):e00789-20.
|
[22] |
PORTUGAL R S, BAUER A, KEIL G M. Selection of differently temporally regulated African swine fever virus promoters with variable expression activities and their application for transient and recombinant virus mediated gene expression[J]. Virology, 2017, 508:70-80.
|
[23] |
RATHAKRISHNAN A, CONNELL S, PETROVAN V, et al. Differential effect of deleting members of African swine fever virus multigene families 360 and 505 from the genotype II Georgia 2007/1 isolate on virus replication, virulence, and induction of protection[J]. J Virol, 2022, 96(6):e01899-21.
|
[24] |
RATHAKRISHNAN A, REIS A L, GOATLEY L C, et al. Deletion of the K145R and DP148R genes from the virulent ASFV Georgia 2007/1 isolate delays the onset, but does not reduce severity, of clinical signs in infected pigs[J]. Viruses, 2021, 13(8):1473.
|
[25] |
RODRÍGUEZ I, NOGAL M L, REDREJO-RODRíGUEZ M, et al. The African swine fever virus virion membrane protein pE248R is required for virus infectivity and an early postentry event[J]. J Virol, 2009, 83(23):12290-12300.
|
[26] |
TURLEWICZ-PODBIELSKA H, KURIGA A, NIEMYJSKI R, et al. African swine fever virus as a difficult opponent in the fight for a vaccine-current data[J]. Viruses, 2021, 13(7):1212.
|
[27] |
TEKLUE T, SUN Y, ABID M, et al. Current status and evolving approaches to African swine fever vaccine development[J]. Transbound Emerg Dis, 2020, 67(2):529-542.
|
[28] |
URBANO A C, FERREIRA F. Role of the DNA-binding protein pA104R in ASFV genome packaging and as a novel target for vaccine and drug development[J]. Vaccines, 2020, 8(4):585.
|
[29] |
LIU R L, SUN Y P, CHAI Y, et al. The structural basis of African swine fever virus pA104R binding to DNA and its inhibition by stilbene derivatives[J]. Proc Natl Acad Sci U S A, 2020, 117(20):11000-11009.
|
[30] |
LIU B Z, CUI Y S, LU G, et al. Small molecule inhibitor E-64 exhibiting the activity against African swine fever virus pS273R[J]. Bioorg Med Chem, 2021, 35:116055.
|