[1] |
ARABYAN E, KOTSYNYAN A, HAKOBYAN A, et al. Antiviral agents against African swine fever virus[J]. Virus Res, 2019, 270:197669.
|
[2] |
周彦铸, 朱羽婕, 张彤彤, 等. 抗非洲猪瘟病毒药物靶点及抗病毒活性物质研究进展[J]. 病毒学报, 2022, 38(5):1225-1236.ZHOU Y Z, ZHU Y J, ZHANG T T, et al. Progress in research on potential drug targets and antiviral constituents against African swine fever virus infection[J]. Chinese Journal of Virology, 2022, 38(5):1225-1236. (in Chinese)中华人民共和国农业农村部. 中华人民共和国农业农村部公告第573号[EB/OL]. (2022-08-30)[2023-03-21]. http://www.moa.gov.cn/nybgb/2022/202208/202208/t20220830_6408131.htm. Ministry of Agriculture and Rural Affairs, PRC. Announcement No.573 of the Ministry of Agriculture and Rural Affairs of the People's Republic of China[EB/OL]. (2022-08-30)[2023-03-21]. http://www.moa.gov.cn/nybgb/2022/202208/202208/t20220830_6408131.htm. (in Chinese)
|
[3] |
欧云文, 马小元, 王俊, 等. 非洲猪瘟分子病原学及分子流行病学研究进展[J]. 中国兽医学报, 2018, 38(2):416-420.OU Y W, MA X Y, WANG J, et al. Advances in studies of molecular etiology and molecular epidemiology for African swine fever[J]. Chinese Journal of Veterinary Science, 2018, 38(2):416-420. (in Chinese)
|
[4] |
王清华, 任炜杰, 包静月, 等. 我国首例非洲猪瘟的确诊[J]. 中国动物检疫, 2018, 35(9):1-4.WANG Q H, REN W J, BAO J Y, et al. The first outbreak of African swine fever was confirmed in China[J]. China Animal Health Inspection, 2018, 35(9):1-4. (in Chinese)
|
[5] |
CHAPMAN D A G, TCHEREPANOV V, UPTON C, et al. Comparison of the genome sequences of non-pathogenic and pathogenic African swine fever virus isolates[J]. J Gen Virol, 2008, 89(2):397-408.
|
[6] |
ALEJO A, MATAMOROS T, GUERRA M, et al. A proteomic atlas of the African swine fever virus particle[J]. J Virol, 2018, 92(23):e01293-18.
|
[7] |
朱利敏, 邹兴启, 赵启祖. 非洲猪瘟病毒多样性[J]. 病毒学报, 2021, 37(3):719-725.ZHU L M, ZOU X Q, ZHAO Q Z. Diversity of African swine fever virus[J]. Chinese Journal of Virology, 2021, 37(3):719-725. (in Chinese)
|
[8] |
SUN E C, HUANG L Y, ZHANG X F, et al. Genotype I African swine fever viruses emerged in domestic pigs in China and caused chronic infection[J]. Emerg Microbes Infect, 2021, 10(1):2183-2193.
|
[9] |
王晓丽, 孙蕾, 刘文军, 等. 非洲猪瘟病毒编码蛋白功能研究进展[J]. 微生物学通报, 2019, 46(7):1827-1836.WANG X L, SUN L, LIU W J, et al. Advances in the functions of African swine fever virus-encoded proteins[J]. Microbiology China, 2019, 46(7):1827-1836. (in Chinese)
|
[10] |
张锦, 陈艳, 邹剑文, 等. 非洲猪瘟病毒p30蛋白的原核表达及间接ELISA抗体检测方法的建立与应用[J]. 畜牧与兽医, 2022, 54(3):83-90.ZHANG J, CHEN Y, ZOU J W, et al. Prokaryotic expression of p30 protein and establishment and application of an indirect ELISA antibody detection method for ASFV[J]. Animal Husbandry & Veterinary Medicine, 2022, 54(3):83-90. (in Chinese)
|
[11] |
戴建华, 王豪伟, 张紫菡. 基于p54的非洲猪瘟抗体胶体金检测方法建立[J]. 中国动物传染病学报, 2021, 29(6):50-54.DAI J H, WANG H W, ZHANG Z H. Development of p54 based colloidal gold detection method for detection of African swine fever antibodies[J]. Chinese Journal of Animal Infectious Diseases, 2021, 29(6):50-54. (in Chinese)
|
[12] |
刘靖. 非洲猪瘟病毒CD2v、p30和pK205R蛋白的表达纯化与p30、pK205R蛋白单克隆抗体的制备[D]. 北京:中国农业科学院, 2021.LIU J. Expression and purification of CD2v, p30 and pK205R proteins of African swine fever virus and preparation of monoclonal antibodies against p30 and pK205R proteins[D]. Beijing:Chinese Academy of Agricultural Sciences, 2021. (in Chinese)
|
[13] |
杨文兵, 邹亚文, 蒋一凡, 等. 非洲猪瘟血清学诊断靶点的研究进展[J]. 畜牧兽医学报, 2021, 52(5):1208-1217.YANG W B, ZOU Y W, JIANG Y F, et al. Advances research on African swine fever serological diagnostic targets[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(5):1208-1217. (in Chinese)
|
[14] |
欧云文, 刘俐君, 贾宁, 等. 非结构蛋白在非洲猪瘟病毒感染中作用[J]. 病毒学报, 2021, 37(4):910-921.OU Y W, LIU L J, JIA N, et al. Roles of African swine fever virus nonstructural proteins in viral infection[J]. Chinese Journal of Virology, 2021, 37(4):910-921. (in Chinese)
|
[15] |
RODRÍGUEZ J M, SALAS M L. African swine fever virus transcription[J]. Virus Res, 2013, 173(1):15-28.
|
[16] |
侯景, 申超超, 张大俊, 等. 非洲猪瘟病毒解旋酶 D1133L 基因序列分析、蛋白结构预测及亚细胞定位[J]. 畜牧兽医学报, 2021, 52(7):1953-1962.HOU J, SHEN C C, ZHANG D J, et al. Gene sequence analysis, protein structure prediction and subcellular localization of African swine fever virus helicase D1133L[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(7):1953-1962. (in Chinese)
|
[17] |
刘弘知, 熊丹, 潘志明, 等. 非洲猪瘟病毒逃逸天然免疫的研究进展[J]. 中国兽医科学, 2022, 52(10):1323-1327.LIU H Z, XIONG D, PAN Z M, et al. Research progresson in innate immune evasion of African swine fever virus[J]. Chinese Veterinary Science, 2022, 52(10):1323-1327. (in Chinese)
|
[18] |
赵旭阳, 靳家鑫, 路闻龙, 等. 非洲猪瘟病毒免疫逃逸分子机制研究进展[J]. 畜牧兽医学报, 2022, 53(7):2074-2082.ZHAO X Y, JIN J X, LU W L, et al. Advances in the molecular mechanism of immune escape of african swine fever virus[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7):2074-2082. (in Chinese)
|
[19] |
ZHANG D W, RODRÍGUEZ-MOLINA J B, TIETJEN J R, et al. Emerging views on the CTD code[J]. Genet Res Int, 2012, 2012:347214.
|
[20] |
IYER L M, BALAJI S, KOONIN E V, et al. Evolutionary genomics of nucleo-cytoplasmic large DNA viruses[J]. Virus Res, 2006, 117(1):156-184.
|
[21] |
钱虹萍, 陈博, 林金星, 等. RNA聚合酶II动态调控及其成像技术的研究进展[J]. 生物技术通报, 2021, 37(4):293-302.QIAN H P, CHEN B, LIN J X, et al. Recent advances on dynamic regulation and imaging techniques of RNA polymerase II[J]. Biotechnology Bulletin, 2021, 37(4):293-302. (in Chinese)
|