[1] SHAKWEER W M E, KRIVORUCHKO A Y, DESSOUKI S M, et al. A review of transgenic animal techniques and their applications[J]. J Genet Eng Biotechnol, 2023, 21(1): 55. [2] WHEELER M B, CAMPION D R. Animal production——a longstanding biotechnological success[J]. Am J Clin Nutr, 1993, 58(2 Suppl): 276S-281S. [3] JAENISCH R,MINTZ B. Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA[J]. Proc Natl Acad Sci U S A, 1974,71(4):1250-1254. [4] 朱元芳,韩永胜,张建胜,等. 基因编辑技术在牛羊育种中的应用[J]. 现代畜牧科技, 2024(8): 61-64. ZHU Y F, HAN Y S, ZHANG J S, et al. Application of gene editing technology in cattle and sheep breeding [J]. Modern Animal Science and Technology, 2024(8): 61-64.(in Chinese) [5] GOLDMAN I L, KADULIN S G, RAZIN S V. Transgenic animals in medicine: integration and expression of foreign genes, theoretical and applied aspects[J]. Med Sci Monit, 2004, 10(11): RA274-RA285. [6] VOSS A K, SANDMOLLER A, SUSKE G, et al. A comparison of mouse and rabbit embryos for the production of transgenic animals by pronuclear microinjection[J]. Theriogenology, 1990, 34(5): 813-824. [7] GAVIN W, BLASH S, BUZZELL N, et al. Generation of transgenic goats by pronuclear microinjection: a retrospective analysis of a commercial operation (1995-2012)[J]. Transgenic Res, 2018, 27(1): 115-122. [8] PU X, YOUNG A P, KUBISCH H M. Production of Transgenic Mice by Pronuclear Microinjection[J]. Methods Mol Biol, 2019, 1874: 17-41. [9] 王佳美,黄永震,高 晨,等. 多能性干细胞概述及其在家畜上的研究进展[J]. 畜牧兽医学报, 2025, 56 (4): 1473-1483. WANG J M, HUANG Y Z, GAO C, et al. Overview of pluripotent stem cells and research progress in livestock [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56 (4): 1473-1483. (in Chinese) [10] MITALIPOVA M, BEYHAN Z, FIRST N L. Pluripotency of bovine embryonic cell line derived from precompacting embryos[J]. Cloning, 2001, 3(2): 59-67. [11] BAO L, HE L, CHEN J, et al. Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors[J]. Cell Res, 2011, 21(4): 600-608. [12] CHOI E, YOON S, KOH Y E, et al. Maintenance of genome integrity and active homologous recombination in embryonic stem cells[J]. Exp Mol Med, 2020, 52(8): 1220-1229. [13] CORTES D, ROBLEDO-ARRATIA Y, HERNANDEZ-MARTINEZ R, et al. Transgenic GDNF positively influences proliferation, differentiation, maturation and survival of motor neurons produced from mouse embryonic stem cells[J]. Front Cell Neurosci, 2016, 10: 217. [14] SECHER J O, LIU Y, PETKOV S, et al. Evaluation of porcine stem cell competence for somatic cell nuclear transfer and production of cloned animals[J]. Anim Reprod Sci, 2017, 178: 40-49. [15] TRAN M Y, KAMEN A A. Production of lentiviral vectors using a HEK-293 producer cell line and advanced perfusion processing[J]. Front Bioeng Biotechnol, 2022, 10: 887716. [16] HOFFMANN M D, SORENSEN R J, EXTROSS A, et al. Protein carrier adeno-associated virus[J]. ACS Nano, 2025, 19(12): 12308-12322. [17] WANG M, SUN Z, YU T, et al. Large-scale production of recombinant human lactoferrin from high-expression, marker-free transgenic cloned cows[J]. Sci Rep, 2017, 7(1): 10733. [18] 罗依妮,王 露. 转座子的研究现状[J]. 中国细胞生物学学报, 2024, 46(7): 1323-1334. LUO Y N, WANG L. Current research on transposons [J]. Chinese Journal of Cell Biology, 2024, 46(7): 1323-1334.(in Chinese) [19] RINGERTZ N R. The discovery of “jumping genes” in corn gave the entire Nobel prize to a 81-year woman (Barbara McClintock)[J]. Lakartidningen, 1983, 80(42): 3908-3910. [20] WATERSTON R H, LINDBLAD-TOH K, BIRNEY E, et al. Initial sequencing and comparative analysis of the mouse genome[J]. Nature, 2002, 420(6915): 520-562. [21] SPADAFORA C. Sperm-mediated gene transfer: mechanisms and implications[J]. Soc Reprod Fertil Suppl, 2007, 65: 459-467. [22] SAMENI M, MORADBEIGI P, HOSSEINI S, et al. ZIF-8 nanoparticle: A valuable tool for improving gene delivery in sperm-mediated gene transfer[J]. Biol Proced Online, 2024, 26(1): 4. [23] DEHGHAN Z, DARYA G, MEHDINEJADIANI S, et al. Comparison of two methods of sperm- and testis-mediated gene transfer in production of transgenic animals: A systematic review[J]. Anim Genet, 2024, 55(3): 328-343. [24] GARCIA-VAZQUEZ F A, RUIZ S, GRULLON L A, et al. Factors affecting porcine sperm mediated gene transfer[J]. Res Vet Sci, 2011, 91(3): 446-453. [25] YUM S, LEE S, PARK S, et al. Long-term health and germline transmission in transgenic cattle following transposon-mediated gene transfer[J]. BMC Genomics, 2018, 19(1): 387. [26] DHUP S, MAJUMDAR S S. Transgenesis via permanent integration of genes in repopulating spermatogonial cells in vivo[J]. Nat Methods, 2008, 5(7): 601-603. [27] PRAMOD R K, MITRA A. Intratesticular injection followed by electroporation allows gene transfer in caprine spermatogenic cells[J]. Sci Rep, 2018,8(1):3169. [28] DEHGHAN Z, DARYA G, MEHDINEJADIANI S, et al. Comparison of two methods of sperm- and testis-mediated gene transfer in production of transgenic animals: A systematic review[J]. Anim Genet, 2024, 55(3): 328-343. [29] OGURA A, MATOBA S, INOUE K. 25th Anniversary Of Cloning By Somatic-Cell Nuclear tRANSFER: Epigenetic abnormalities associated with somatic cell nuclear transfer[J]. Reproduction, 2021, 162(1): F45-F58. [30] SWEGEN A, APPELTANT R, WILLIAMS S A. Cloning in action: can embryo splitting, induced pluripotency and somatic cell nuclear transfer contribute to endangered species conservation?[J]. Biol Rev Camb Philos Soc, 2023, 98(4): 1225-1249. [31] MCCUTCHEON S R, ROHM D, IGLESIAS N, et al. Epigenome editing technologies for discovery and medicine[J]. Nat Biotechnol, 2024, 42(8): 1199-1217. [32] TRAN N T, HAN R. Rapidly evolving genome and epigenome editing technologies[J]. Mol Ther, 2024, 32(9): 2803-2806. [33] CETIN B, ERENDOR F, EKSI Y E, et al. Gene and cell therapy of human genetic diseases: Recent advances and future directions[J]. J Cell Mol Med, 2024, 28(17): e70056. [34] ADANE M, ALAMNIE G. CRISPR/Cas9 mediated genome editing for crop improvement against abiotic stresses: current trends and prospects[J]. Funct Integr Genomics, 2024, 24(6): 199. [35] PASCHON D E, LUSSIER S, WANGZOR T, et al. Diversifying the structure of zinc finger nucleases for high-precision genome editing[J]. Nat Commun, 2019, 10(1): 1133. [36] WANI A K, AKHTAR N, SINGH R, et al. Genome centric engineering using ZFNs, TALENs and CRISPR-Cas9 systems for trait improvement and disease control in Animals[J]. Vet Res Commun, 2023, 47(1): 1-16. [37] PASCHON D E, LUSSIER S, WANGZOR T, et al. Diversifying the structure of zinc finger nucleases for high-precision genome editing[J]. Nat Commun, 2019, 10(1): 1133. [38] LIU L, ZHANG Y, LIU M, et al. Structural insights into the specific recognition of 5-methylcytosine and 5-hydroxymethylcytosine by TAL effectors[J]. J Mol Biol, 2020, 432(4): 1035-1047. [39] ABDALLAH N A, PRAKASH C S, MCHUGHEN A G. Genome editing for crop improvement: Challenges and opportunities[J]. GM Crops Food, 2015, 6(4): 183-205. [40] ZHANG Y, LIU L, GUO S, et al. Deciphering TAL effectors for 5-methylcytosine and 5-hydroxymethylcytosine recognition[J]. Nat Commun, 2017, 8(1): 901. [41] ZHU Y. Advances in CRISPR/Cas9[J]. Biomed Res Int, 2022, 2022: 9978571. [42] DING S, LIU J, HAN X, et al. CRISPR/Cas9-mediated genome editing in cancer therapy[J]. Int J Mol Sci, 2023, 24(22):16325. [43] LIU Z, SHI M, REN Y, et al. Recent advances and applications of CRISPR-Cas9 in cancer immunotherapy[J]. Mol Cancer, 2023, 22(1): 35. [44] HUAI C, LI G, YAO R, et al. Structural insights into DNA cleavage activation of CRISPR-Cas9 system[J]. Nat Commun, 2017, 8(1): 1375. [45] DOMAN J L, RAGURAM A, NEWBY G A, et al. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors[J]. Nat Biotechnol, 2020, 38(5): 620-628. [46] LIU Z, CHEN S, XIE W, et al. Versatile and efficient in vivo genome editing with compact Streptococcus pasteurianus Cas9[J]. Mol Ther, 2022, 30(1): 256-267. [47] HUSSAIN M S, BISHT A S, ALI H, et al. Glutathione-responsive nanoparticles for optimized Cas9/sgRNA gene editing delivery[J]. Curr Drug Targets, 2025. doi: 10.2174/0113894501370119250409074208. [48] ZHAO D, JIANG G, LI J, et al. Imperfect guide-RNA (igRNA) enables CRISPR single-base editing with ABE and CBE[J]. Nucleic Acids Res, 2022, 50(7): 4161-4170. [49] BADIA-BRINGUE G, CANIVE M, VAZQUEZ P, et al. Genome-wide association study reveals quantitative trait loci and candidate genes associated with high interferon-gamma production in Holstein cattle naturally infected with mycobacterium bovis[J]. Int J Mol Sci, 2024, 25(11): 6165. [50] GONZALEZ-RUIZ S, STRILLACCI M G, DURAN-AGUILAR M, et al. Genome-wide association study in mexican holstein cattle reveals novel quantitative trait loci regions and confirms mapped loci for resistance to bovine tuberculosis[J]. Animals (Basel), 2019, 9(9):636. [51] YU Y, JIN C, FU R, et al. Splenic comparative transcriptome analysis reveals the immunological mode of undomesticated Gayal (Bos frontalis) for adapting to harsh environments[J]. BMC Genomics, 2025, 26(1): 514. [52] MALLIKARJUNAPPA S, SHANDILYA U K, SHARMA A, et al. Functional analysis of bovine interleukin-10 receptor alpha in response to Mycobacterium avium subsp. paratuberculosis lysate using CRISPR/Cas9[J]. BMC Genet, 2020, 21(1): 121. [53] HUANG K, YUAN L, LIU J, et al. Application of multi-omics technology in pathogen identification and resistance gene screening of sheep pneumonia[J]. BMC Genomics, 2025, 26(1): 507. [54] 刘华阳,李祥明. 我国疯牛病传染因子研究进展[J]. 饲料工业, 2020, 41(15): 60-64. LIU H Y, LI X M. Research progress on the transmissible agent of bovine spongiform encephalopathy in China [J]. Feed Industry, 2020, 41(15): 60-64.(in Chinese) [55] 刘美丽,赵德明. 疯牛病与转基因动物研究[J]. 中国动物检疫, 2004(9): 46-49. LIU M L, ZHAO D M. BSE and transgenic animal research [J]. China Animal Quarantine, 2004(9): 46-49.(in Chinese) [56] RICHT J A, KASINATHAN P, HAMIR A N, et al. Production of cattle lacking prion protein[J]. Nat Biotechnol, 2007, 25(1): 132-138. [57] BEVACQUA R J, FERNANDEZ-MARTIN R, SAVY V, et al. Efficient edition of the bovine PRNP prion gene in somatic cells and IVF embryos using the CRISPR/Cas9 system[J]. Theriogenology, 2016, 86(8): 1886-1896. [58] BEVACQUA R J, FERNANDEZ-MARTIN R, SAVY V, et al. Efficient edition of the bovine PRNP prion gene in somatic cells and IVF embryos using the CRISPR/Cas9 system[J]. Theriogenology, 2016, 86(8): 1886-1896. [59] ZIGO F, VASIL' M, ONDRASOVICOVA S, et al. Maintaining optimal mammary gland health and prevention of mastitis[J]. Front Vet Sci, 2021, 8: 607311. [60] KERR D E, PLAUT K, BRAMLEY A J, et al. Lysostaphin expression in mammary glands confers protection against staphylococcal infection in transgenic mice[J]. Nat Biotechnol, 2001, 19(1): 66-70. [61] FAN W, PLAUT K, BRAMLEY A J, et al. Adenoviral-mediated transfer of a lysostaphin gene into the goat mammary gland[J]. J Dairy Sci, 2002, 85(7): 1709-1716. [62] LIU X, WANG Y, GUO W, et al. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows[J]. Nat Commun, 2013,4:2565 [63] SHANDILYA U K, SHARMA A, MALLIKARJUNAPPA S, et al. CRISPR-Cas9-mediated knockout of TLR4 modulates Mycobacterium avium ssp. paratuberculosis cell lysate-induced inflammation in bovine mammary epithelial cells[J]. J Dairy Sci, 2021, 104(10): 11135-11146. [64] FENG R, ZHAO J, ZHANG Q, et al. Generation of anti-mastitis gene-edited dairy goats with enhancing lysozyme expression by inflammatory regulatory sequence using ISDra2-TnpB system[J]. Adv Sci (Weinh), 2024, 11(38): e2404408. [65] REIS A C, RAMOS B, PEREIRA A C, et al. Global trends of epidemiological research in livestock tuberculosis for the last four decades[J]. Transbound Emerg Dis, 2021, 68(2): 333-346. [66] WU H, WANG Y, ZHANG Y, et al. TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis[J]. Proc Natl Acad Sci U S A, 2015, 112(13): E1530-E1539. [67] SU F, CHEN X, LIU X, et al. Expression of recombinant HBD3 protein that reduces Mycobacterial infection capacity[J].AMB Express, 2018,8(1):42. [68] GAO Y, WU H, WANG Y, et al. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects[J]. Genome Biol, 2017, 18(1): 13. [69] DIAZ-SAN SEGUNDO F, MEDINA G N, STENFELDT C, et al. Foot-and-mouth disease vaccines[J]. Vet Microbiol, 2017, 206: 102-112. [70] TANG J, ABDULLAH S W, LI P, et al. Heat shock protein 60 is involved in viral replication complex formation and facilitates foot and mouth virus replication by stabilizing viral nonstructural proteins 3A and 2C[J]. mBio, 2022, 13(5): e0143422. [71] LI W, WANG K, KANG S, et al. Tongue epithelium cells from shRNA mediated transgenic goat show high resistance to foot and mouth disease virus[J]. Sci Rep, 2015, 5: 17897. [72] DENG S, LI G, YU K, et al. RNAi combining Sleeping Beauty transposon system inhibits ex vivo expression of foot-and-mouth disease virus VP1 in transgenic sheep cells[J]. Sci Rep, 2017, 7(1): 10065. [73] HOU S, WANG X, REN S, et al. Knockout of HDAC9 gene enhances foot-and-mouth disease virus replication[J]. Front Microbiol, 2022, 13: 805606. [74] WU X, YANG Y, RU Y, et al. Knockout of the WD40 domain of ATG16L1 enhances foot and mouth disease virus replication[J]. BMC Genomics, 2024, 25(1): 796. |