畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (3): 882-893.doi: 10.11843/j.issn.0366-6964.2024.03.003
武上杰1, 栾园园1, 王明坤1, 张贺春2, 于波2, 马月辉1, 蒋琳1, 何晓红1*
收稿日期:
2023-09-05
出版日期:
2024-03-23
发布日期:
2024-03-27
通讯作者:
何晓红,主要从事动物种质资源研究,E-mail:hexiaohong@caas.cn
作者简介:
武上杰(1997-),男,湖北嘉鱼人,硕士生,主要从事动物遗传育种与繁殖研究,E-mail:82101215392@caas.cn
基金资助:
WU Shangjie1, LUAN Yuanyuan1, WANG Mingkun1, ZHANG Hechun2, YU Bo2, MA Yuehui1, JIANG Lin1, HE Xiaohong1*
Received:
2023-09-05
Online:
2024-03-23
Published:
2024-03-27
摘要: 布鲁氏菌病(brucellosis)是一种由布鲁氏菌(Brucella)感染引起的全球性人畜共患病,不仅给绵羊养殖业造成巨大的经济损失,还对公共卫生带来重大的安全隐患。布鲁氏菌具有胞内寄生和免疫逃避的能力,因此疫苗接种等常规措施难以有效防控布鲁氏菌的感染。开展绵羊布鲁氏菌病抗病新品种的选育工作,能从动物源头切断布鲁氏菌病的传播途径。本文简要阐述了布鲁氏菌依赖于毒力因子的免疫逃避机制,系统回顾了国内外布鲁氏菌病抗病育种的研究进展,包括家系群体选育、基因工程选育和标记辅助选育,并按炎症和免疫反应的发生发展阶段对候选抗病基因作了详细的梳理,以期为布鲁氏菌病的致病机制研究、抗病基因挖掘和抗病绵羊培育提供理论依据。
中图分类号:
武上杰, 栾园园, 王明坤, 张贺春, 于波, 马月辉, 蒋琳, 何晓红. 绵羊布鲁氏菌病抗病育种研究进展[J]. 畜牧兽医学报, 2024, 55(3): 882-893.
WU Shangjie, LUAN Yuanyuan, WANG Mingkun, ZHANG Hechun, YU Bo, MA Yuehui, JIANG Lin, HE Xiaohong. Advances of Disease-Resistant Breeding on Ovine Brucellosis[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 882-893.
[1] PAPPAS G, PAPADIMITRIOU P, AKRITIDIS N, et al.The new global map of human brucellosis[J].Lancet Infect Dis, 2006, 6(2):91-99. [2] MORENO E.The one hundred year journey of the genus Brucella (Meyer and Shaw 1920)[J].FEMS Microbiol Rev, 2021, 45(1):fuaa045. [3] 高彦辉, 赵丽军, 孙殿军, 等.布鲁氏菌病防治基础研究现状与展望[J].中国科学:生命科学, 2014, 44(6):628-635. GAO Y H, ZHAO L J, SUN D J, et al.Status and perspective of basic research related to the prevention and control of brucellosis[J].Scientia Sinica Vitae, 2014, 44(6):628-635.(in Chinese) [4] MA J Y, WANG H, ZHANG X F, et al.MLVA and MLST typing of Brucella from Qinghai, China[J].Infect Dis Poverty, 2016, 5:26. [5] CAO X A, LI S E, LI Z C, et al.Enzootic situation and molecular epidemiology of Brucella in livestock from 2011 to 2015 in Qingyang, China[J].Emerg Microbes Infect, 2018, 7(1):1-8. [6] YANG X W, PIAO D, MAO L L, et al.Whole-genome sequencing of rough Brucella melitensis in China provides insights into its genetic features[J].Emerg Microbes Infect, 2020, 9(1):2147-2156. [7] 汪洁英, 宁 博, 景 伟, 等.布鲁氏菌病及其在我国的防控现状与建议[J].中国兽医科学, 2022, 52(12):1578-1585. WANG J Y, NING B, JING W, et al.Research progress and suggestions regarding on the prevention and control of brucellosis in China:a review[J].Chinese Veterinary Science, 2022, 52(12):1578-1585.(in Chinese) [8] JIANG H, O'CALLAGHAN D, DING J B.Brucellosis in China:history, progress and challenge[J].Infect Dis Poverty, 2020, 9(1):55. [9] OLSEN S C, STOFFREGEN W S.Essential role of vaccines in brucellosis control and eradication programs for livestock[J].Expert Rev Vaccines, 2005, 4(6):915-928. [10] JIAO H W, ZHOU Z X, LI B W, et al.The mechanism of facultative intracellular parasitism of Brucella[J].Int J Mol Sci, 2021, 22(7):3673. [11] CONDE-ÁLVAREZ R, ARCE-GORVEL V, IRIARTE M, et al.The lipopolysaccharide core of Brucella abortus acts as a shield against innate immunity recognition[J].PLoS Pathog, 2012, 8(5):e1002675. [12] MANCILLA M.Smooth to Rough dissociation in Brucella:the missing link to virulence[J].Front Cell Infect Microbiol, 2016, 5:98. [13] ROOP II R M, BARTON I S, HOPERSBERGER D, et al.Uncovering the hidden credentials of Brucella virulence[J].Microbiol Mol Biol Rev, 2021, 85(1):e00021-19. [14] COPIN R, VITRY M A, HANOT MAMBRES D, et al.In situ microscopy analysis reveals local innate immune response developed around Brucella infected cells in resistant and susceptible mice[J].PLoS Pathog, 2012, 8(3):e1002575. [15] LINGWOOD D, SIMONS K.Lipid rafts as a membrane-organizing principle[J].Science, 2010, 327(5961):46-50. [16] WATARAI M, MAKINO S I, FUJII Y, et al.Modulation of Brucella-induced macropinocytosis by lipid rafts mediates intracellular replication[J].Cell Microbiol, 2002, 4(6):341-355. [17] ARELLANO-REYNOSO B, LAPAQUE N, SALCEDO S, et al.Cyclic β-1, 2-glucan is a brucella virulence factor required for intracellular survival[J].Nat Immunol, 2005, 6(6):618-625. [18] GUIDOLIN L S, ARCE-GORVEL V, CIOCCHINI A E, et al.Cyclic β-glucans at the bacteria-host cells interphase:one sugar ring to rule them all[J].Cell Microbiol, 2018, 20(6):e12850. [19] LEE J J, KIM D G, KIM D H, et al.Interplay between clathrin and Rab5 controls the early phagocytic trafficking and intracellular survival of Brucella abortus within HeLa cells[J].J Biol Chem, 2013, 288(39):28049-28057. [20] METTLEN M, CHEN P H, SRINIVASAN S, et al.Regulation of clathrin-mediated endocytosis[J].Annu Rev Biochem, 2018, 87:871-896. [21] EHRLICH M, BOLL W, VAN OIJEN A, et al.Endocytosis by random initiation and stabilization of clathrin-coated pits[J].Cell, 2004, 118(5):591-605. [22] CELLI J, DE CHASTELLIER C, FRANCHINI D M, et al.Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum[J].J Exp Med, 2003, 198(4):545-556. [23] VON BARGEN K, GORVEL J P, SALCEDO S P.Internal affairs:investigating the Brucella intracellular lifestyle[J].FEMS Microbiol Rev, 2012, 36(3):533-562. [24] BOSCHIROLI M L, OUAHRANI-BETTACHE S, FOULONGNE V, et al.The Brucella suis virB operon is induced intracellularly in macrophages[J].Proc Natl Acad Sci U S A, 2002, 99(3):1544-1549. [25] MILLER C N, SMITH E P, CUNDIFF J A, et al.A Brucella type IV effector targets the COG tethering complex to remodel host secretory traffic and promote intracellular replication[J].Cell Host Microbe, 2017, 22(3):317-329.e7. [26] FUGIER E, SALCEDO S P, DE CHASTELLIER C, et al.The glyceraldehyde-3-phosphate dehydrogenase and the small GTPase Rab 2 are crucial for Brucella replication[J].PLoS Pathog, 2009, 5(6):e1000487. [27] SEDZICKI J, TSCHON T, LOW S H, et al.3D correlative electron microscopy reveals continuity of Brucella-containing vacuoles with the endoplasmic reticulum[J].J Cell Sci, 2018, 131(4):jcs210799. [28] RAMBOW-LARSEN A A, PETERSEN E M, GOURLEY C R, et al.Brucella regulators:self-control in a hostile environment[J].Trends Microbiol, 2009, 17(8):371-377. [29] STARR T, CHILD R, WEHRLY T D, et al.Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle[J].Cell Host Microbe, 2012, 11(1):33-45. [30] HIYOSHI H, ENGLISH B C, DIAZ-OCHOA V E, et al.Virulence factors perforate the pathogen-containing vacuole to signal efferocytosis[J].Cell Host Microbe, 2022, 30(2):163-170.e6. [31] 张世栋, 金维江.动物抗病育种研究进展[J].中国畜牧杂志, 1999, 35(4):55-57. ZHANG S D, JIN W J.Research progress in animal disease resistance breeding[J].Chinese Journal of Animal Science, 1999, 35(4):55-57.(in Chinese) [32] 朱猛进, 吴珍芳, 赵书红.猪抗病育种研究进展及对几个认识问题的讨论[J].中国畜牧兽医, 2007, 34(4):63-67. ZHU M J, WU Z F, ZHAO S H.Research progress on pig disease resistance breeding and discussion of several cognitive issues[J].China Animal Husbandry & Veterinary Medicine, 2007, 34(4):63-67.(in Chinese) [33] 施启顺.畜禽抗病育种研究进展[J].中国畜牧杂志, 1995, 31(6):48-51. SHI Q S.Research progress in disease resistance breeding of livestock and poultry[J].Chinese Journal of Animal Science, 1995, 31(6):48-51.(in Chinese) [34] CAMERON H S, HUGHES E H, GREGORY P W.Genetic resistance to brucellosis in swine[J].J Anim Sci, 1942, 1(2):106-110. [35] 朱 波.鸡H/L选育系选择效果分析及功能基因筛选[D].北京:中国农业科学院, 2019. ZHU B.Chicken H/L selection effect analysis and functional gene screening[D].Beijing:Chinese Academy of Agricultural Sciences, 2019.(in Chinese) [36] 王笑言.抗DHAV-3北京鸭专门化品系的选育及G2代群体的抗病力差异机制[D].北京:中国农业科学院, 2017. WANG X Y.Study on the resistant breeding of Pekin duck and the differences in the second generation resistance to DHAV-3[D].Beijing:Chinese Academy of Agricultural Sciences, 2017.(in Chinese) [37] 谢晓刚, 薛 嘉, 康 健, 等.基因编辑技术发展及其在家畜上的应用[J].农业生物技术学报, 2019, 27(1):139-149. XIE X G, XUE J, KANG J, et al.Development of gene editing techniques and its application in livestock[J].Journal of Agricultural Biotechnology, 2019, 27(1):139-149.(in Chinese) [38] DENG S L, WU Q, YU K, et al.Changes in the relative inflammatory responses in sheep cells overexpressing of toll-like receptor 4 when stimulated with LPS[J].PLoS One, 2012, 7(10):e47118. [39] LI Y, LIAN D, DENG S L, et al.Efficient production of pronuclear embryos in breeding and nonbreeding season for generating transgenic sheep overexpressing TLR4[J].J Anim Sci Biotechnol, 2016, 7:38. [40] 杨爱玲, 李广栋, 吴 昊, 等.褪黑素合成酶AANAT/ASMT基因过表达绵羊生物安全评价研究[J].畜牧兽医学报, 2020, 51(7):1563-1572. YANG A L, LI G D, WU H, et al.Study of biosafety evaluation on melatonin synthase AANAT/ASMT overexpressed sheep[J].Acta Veterinaria et Zootechnica Sinica, 2020, 51(7):1563-1572.(in Chinese) [41] MA T, TAO J L, YANG M H, et al.An AANAT/ASMT transgenic animal model constructed with CRISPR/Cas9 system serving as the mammary gland bioreactor to produce melatonin-enriched milk in sheep[J].J Pineal Res, 2017, 63(1):e12406. [42] LI G D, LV D Y, YAO Y J, et al.Overexpression of ASMT likely enhances the resistance of transgenic sheep to brucellosis by influencing immune-related signaling pathways and gut microbiota[J].FASEB J, 2021, 35(9):e21783. [43] 李林召, 张龙超.国内外抗病育种技术研究进展[J].中国畜牧兽医, 2009, 36(9):104-106. LI L Z, ZHANG L C.Research progress of disease resistance breeding technology at home and abroad[J].China Animal Husbandry & Veterinary Medicine, 2009, 36(9):104-106.(in Chinese) [44] LEMAITRE B, NICOLAS E, MICHAUT L, et al.The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in drosophila adults[J].Cell, 1996, 86(6):973-983. [45] KAWAI T, AKIRA S.Toll-like receptors and their crosstalk with other innate receptors in infection and immunity[J].Immunity, 2011, 34(5):637-650. [46] GIAMBARTOLOMEI G H, ZWERDLING A, CASSATARO J, et al.Lipoproteins, not lipopolysaccharide, are the key mediators of the proinflammatory response elicited by heat-killed Brucella abortus[J].J Immunol, 2004, 173(7):4635-4642. [47] CAMPOS P C, GOMES M T R, GUIMARÃES E S, et al.TLR7 and TLR3 sense Brucella abortus RNA to induce proinflammatory cytokine production but they are dispensable for host control of infection[J].Front Immunol, 2017, 8:28. [48] CAMPOS M A, ROSINHA G M S, ALMEIDA I C, et al.Role of toll-like receptor 4 in induction of cell-mediated immunity and resistance to Brucella abortus infection in mice[J].Infect Immun, 2004, 72(1):176-186. [49] GOMES M T, CAMPOS P C, PEREIRA G D S, et al.TLR9 is required for MAPK/NF-κB activation but does not cooperate with TLR2 or TLR6 to induce host resistance to Brucella abortus[J].J Leukoc Biol, 2016, 99(5):771-780. [50] MACEDO G C, MAGNANI D M, CARVALHO N B, et al.Central role of MyD88-dependent dendritic cell maturation and proinflammatory cytokine production to control Brucella abortus infection[J].J Immunol, 2008, 180(2):1080-1087. [51] CIRL C, WIESER A, YADAV M, et al.Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins[J].Nat Med, 2008, 14(4):399-406. [52] SMITH J A, KHAN M, MAGNANI D D, et al.Brucella induces an unfolded protein response via TcpB that supports intracellular replication in macrophages[J].PLoS Pathog, 2013, 9(12):e1003785. [53] GOMES M T R, CAMPOS P C, DE ALMEIDA L A, et al.The role of innate immune signals in immunity to Brucella abortus[J].Front Cell Infect Microbiol, 2012, 2:130. [54] KEESTRA-GOUNDER A M, BYNDLOSS M X, SEYFFERT N, et al.NOD1 and NOD2 signalling links ER stress with inflammation[J].Nature, 2016, 532(7599):394-397. [55] QIN Q M, PEI J W, ANCONA V, et al.RNAi screen of endoplasmic reticulum-associated host factors reveals a role for IRE1α in supporting Brucella replication[J].PLoS Pathog, 2008, 4(7):e1000110. [56] GOMES M T R, CAMPOS P C, OLIVEIRA F S, et al.Critical role of ASC inflammasomes and bacterial type IV secretion system in caspase-1 activation and host innate resistance to Brucella abortus infection[J].J Immunol, 2013, 190(7):3629-3638. [57] BRONNER D N, ABUAITA B H, CHEN X Y, et al.Endoplasmic reticulum stress activates the inflammasome via NLRP3-and caspase-2-driven mitochondrial damage[J].Immunity, 2015, 43(3):451-462. [58] MARIM F M, FRANCO M M C, GOMES M T R, et al.The role of NLRP3 and AIM2 in inflammasome activation during Brucella abortus infection[J].Semin Immunopathol, 2017, 39(2):215-223. [59] ISHIKAWA H, BARBER G N.STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling[J].Nature, 2008, 455(7213):674-678. [60] BARBER G N.STING:infection, inflammation and cancer[J].Nat Rev Immunol, 2015, 15(12):760-770. [61] KHAN M, HARMS J S, LIU Y P, et al.Brucella suppress STING expression via miR-24 to enhance infection[J].PLoS Pathog, 2020, 16(10):e1009020. [62] GOMES M T R, GUIMARÃES E S, MARINHO F V, et al.STING regulates metabolic reprogramming in macrophages via HIF-1α during Brucella infection[J].PLoS Pathog, 2021, 17(5):e1009597. [63] GUIMARÃES E S, GOMES M T R, SANCHES R C O, et al.The endoplasmic reticulum stress sensor IRE1α modulates macrophage metabolic function during Brucella abortus infection[J].Front Immunol, 2022, 13:1063221. [64] BARRIONUEVO P, GIAMBARTOLOMEI G H.Inhibition of antigen presentation by Brucella:many more than many ways[J].Microbes Infect, 2019, 21(3-4):136-142. [65] RAFIEI A, ARDESTANI S K, KARIMINIA A, et al.Dominant Th1 cytokine production in early onset of human brucellosis followed by switching towards Th2 along prolongation of disease[J].J Infect, 2006, 53(5):315-324. [66] ZHENG R J, XIE S S, ZHANG Q, et al.Circulating Th1, Th2, Th17, Treg, and PD-1 levels in patients with brucellosis[J].J Immunol Res, 2019, 2019:3783209. [67] HWANG E S, WHITE I A, HO I C.An IL-4-independent and CD25-mediated function of c-maf in promoting the production of Th2 cytokines[J].Proc Natl Acad Sci U S A, 2002, 99(20):13026-13030. [68] RANZANI V, ROSSETTI G, PANZERI I, et al.The long intergenic noncoding RNA landscape of human lymphocytes highlights the regulation of T cell differentiation by linc-MAF-4[J].Nat Immunol, 2015, 16(3):318-325. [69] GHEITASI R, KERAMAT F, SOLGI G, et al.Investigation of Linc-MAF-4 expression as an effective marker in brucellosis[J].Mol Immunol, 2020, 123:60-63. [70] THAI T H, CALADO D P, CASOLA S, et al.Regulation of the germinal center response by microRNA-155[J]. Science, 2007, 316(5824):604-608. [71] ZHANG X, CHEN J J, CHENG H M, et al.MicroRNA-155 expression with Brucella infection in vitro and in vivo and decreased serum levels of MicroRNA-155 in patients with brucellosis[J].Sci Rep, 2022, 12(1):4181. [72] HOP H T, REYES A W B, HUY T X N, et al.Activation of NF-κB-mediated TNF-induced antimicrobial immunity is required for the efficient Brucella abortus clearance in RAW 264.7 cells[J].Front Cell Infect Microbiol, 2017, 7:437. [73] LOU L X, BAO W G, LIU X J, et al.An autoimmune disease-associated risk variant in the TNFAIP3 gene plays a protective role in brucellosis that is mediated by the NF-κB signaling pathway[J].J Clin Microbiol, 2018, 56(4):e01363-17. [74] DENG X M, GUO J, SUN Z H, et al.Brucella-induced downregulation of lncRNA Gm28309 triggers macrophages inflammatory response through the miR-3068-5p/NF-κB pathway[J].Front Immunol, 2020, 11:581517. [75] CORSETTI P P, DE ALMEIDA L A, GONÇALVES A N A, et al.miR-181a-5p regulates TNF-α and miR-21a-5p influences gualynate-binding protein 5 and IL-10 expression in macrophages affecting host control of brucella abortus infection[J].Front Immunol, 2018, 9:1331. [76] JIMÉNEZ DE BAGVÉS M P, GROSS A, TERRAZA A, et al.Regulation of the mitogen-activated protein kinases by Brucella spp. expressing a smooth and rough phenotype:relationship to pathogen invasiveness[J]. Infect Immun, 2005, 73(5):3178-3183. [77] ZHANG C Y, BAI N, ZHANG Z H, et al.TLR2 signaling subpathways regulate TLR9 signaling for the effective induction of IL-12 upon stimulation by heat-killed Brucella abortus[J].Cell Mol Immunol, 2012, 9(4):324-333. [78] DIMITRAKOPOULOS O, LIOPETA K, DIMITRACOPOULOS G, et al.Replication of Brucella melitensis inside primary human monocytes depends on mitogen activated protein kinase signaling[J].Microbes Infect, 2013, 15(6-7):450-460. [79] HOP H T, ARAYAN L T, HUY T X N, et al.The key role of c-fos for immune regulation and bacterial dissemination in Brucella infected macrophage[J].Front Cell Infect Microbiol, 2018, 8:287. [80] SCOTT I, WANG L D, WU K Y, et al.GCN5L1/BLOS1 links acetylation, organelle remodeling, and metabolism[J]. Trends Cell Biol, 2018, 28(5):346-355. [81] WELLS K M, HE K, PANDEY A, et al.Brucella activates the host RIDD pathway to subvert BLOS1-directed immune defense[J].Elife, 2022, 11:e73625. [82] WONG M T, CHEN S S L.Emerging roles of interferon-stimulated genes in the innate immune response to hepatitis C virus infection[J].Cell Mol Immunol, 2016, 13(1):11-35. [83] RANJBAR S, HARIDAS V, JASENOSKY L D, et al.A role for IFITM proteins in restriction of Mycobacterium tuberculosis infection[J].Cell Rep, 2015, 13(5):874-883. [84] YI J H, WANG Y L, ZHANG H, et al.Interferon-inducible transmembrane protein 3-containing exosome as a new carrier for the cell-to-cell transmission of anti-Brucella activity[J].Front Vet Sci, 2021, 8:642968. [85] SATHIYASEELAN J, JIANG X, BALDWIN C L.Growth of Brucella abortus in macrophages from resistant and susceptible mouse strains[J].Clin Exp Immunol, 2000, 121(2):289-294. [86] BORRIELLO G, CAPPARELLI R, BIANCO M, et al.Genetic resistance to Brucella abortus in the water buffalo (Bubalus bubalis)[J].Infect Immun, 2006, 74(4):2115-2120. [87] ANTELO G T, VILA A J, GIEDROC D P, et al.Molecular evolution of transition metal bioavailability at the host-pathogen interface[J].Trends Microbiol, 2021, 29(5):441-457. [88] TALTY A, DEEGAN S, LJUJIC M, et al.Inhibition of IRE1α RNase activity reduces NLRP3 inflammasome assembly and processing of pro-IL1β[J].Cell Death Dis, 2019, 10(9):622. [89] COSTA FRANCO M M S, MARIM F M, ALVES-SILVA J, et al.AIM2 senses Brucella abortus DNA in dendritic cells to induce IL-1β secretion, pyroptosis and resistance to bacterial infection in mice[J].Microbes Infect, 2019, 21(2):85-93. [90] ENOMA D O, BISHUNG J, ABIODUN T, et al.Machine learning approaches to genome-wide association studies[J].J King Saud Univ Sci, 2022, 34(4):101847. |
[1] | 李剑南, 袁利明, 华进联. CD46基因在家畜抗病育种中的应用研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1866-1874. |
[2] | 徐朕宇, 邓肖玉, 王月丽, 孙灿, 吴澳迪, 曹剑, 易继海, 王勇, 王震, 陈创夫. 牛种布鲁氏菌A19ΔBtpA缺失株生物学特性及其免疫原性研究[J]. 畜牧兽医学报, 2024, 55(5): 2135-2145. |
[3] | 赵灿奇, 冯宇, 吕浪, 李彦军, 魏玉磊, 丁家波, 陈祥, 蒋卉. 竞争ELISA和间接ELISA方法应用于牛布鲁氏菌病净化的研究[J]. 畜牧兽医学报, 2024, 55(5): 2146-2153. |
[4] | 翟云逸, 袁野, 李俊玫, 田路路, 刁梓洋, 李彬, 陈家露, 周栋, 靳亚平, 王爱华. 布鲁氏菌外膜蛋白16单克隆抗体的制备及初步应用[J]. 畜牧兽医学报, 2023, 54(5): 2083-2091. |
[5] | 相彩霞, 王相国, 李俊玫, 支飞杰, 房姣阳, 郑维芳, 陈家露, 靳亚平, 王爱华. 布鲁氏菌Ⅳ型分泌系统效应蛋白VceC对山羊滋养层细胞内质网应激和性腺激素分泌的影响[J]. 畜牧兽医学报, 2023, 54(3): 1210-1220. |
[6] | 刘铃, 王丹丹, 崔凯, 马月辉, 蒋琳. 猪繁殖与呼吸综合征抗病育种研究进展[J]. 畜牧兽医学报, 2023, 54(2): 434-442. |
[7] | 丰鑫, 汪铭书, 程安春. 甲型疱疹病毒亚科的疱疹病毒囊膜糖蛋白gC对病毒感染复制的影响[J]. 畜牧兽医学报, 2022, 53(9): 2867-2876. |
[8] | 李杨, 周栋, 尹彦龙, 张广冻, 相彩霞, 支飞杰, 白芙蓉, 林鹏飞, 靳亚平, 王爱华. 布鲁氏菌OMP16对RAW264.7细胞凋亡与免疫活性的影响[J]. 畜牧兽医学报, 2022, 53(8): 2642-2651. |
[9] | 杨琴, 邓肖玉, 谢珊珊, 易继海, 王勇, 张倩, 王震, 陈创夫. 牛种布鲁氏菌Ⅳ型分泌系统对巨噬细胞内质网应激和细胞凋亡的影响[J]. 畜牧兽医学报, 2022, 53(4): 1192-1200. |
[10] | 席静, 王月丽, 邓肖玉, 杨琴, 李培东, 张江伟, 孙天浩, 朱良全, 易继海, 陈创夫. STAT6介导的巨噬细胞极化对布鲁氏菌胞内存活的影响[J]. 畜牧兽医学报, 2022, 53(1): 263-271. |
[11] | 梅力, 王英超, 程汝佳, 于国际, 范学政, 高晓龙, 高敏, 秦玉明, 李筱英, 李巧玲, 朱良全, 冯小宇. 1种布鲁氏菌微滴式数字PCR检测方法的建立[J]. 畜牧兽医学报, 2021, 52(6): 1753-1759. |
[12] | 方晨, 郭飞, 胡瑞举, 杨明华, 张斌, 刘韶娜, 黄英, 赵彦光, 赵素梅. 杂交组合断奶仔猪腹泻与FUT1基因遗传变异的关联分析[J]. 畜牧兽医学报, 2021, 52(3): 610-619. |
[13] | 谢黎卿, 杨洋, 彭远义, 李能章. 病原微生物荚膜多糖的生物学功能[J]. 畜牧兽医学报, 2021, 52(3): 576-587. |
[14] | 蒋卉, 冯宇, 李筱英, 范学政, 彭小薇, 丁家波. 布鲁氏菌4种高通量抗体检测方法的比较研究[J]. 畜牧兽医学报, 2021, 52(11): 3208-3214. |
[15] | 黄雅琳, 程安春, 汪铭书. 囊膜糖蛋白gE对α疱疹病毒毒力的影响[J]. 畜牧兽医学报, 2020, 51(7): 1506-1514. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||