畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (8): 3267-3275.doi: 10.11843/j.issn.0366-6964.2024.08.001
刘雯雯1,2(), 董发明1,*(
), 毕延震2,3,*(
)
收稿日期:
2024-01-08
出版日期:
2024-08-23
发布日期:
2024-08-28
通讯作者:
董发明,毕延震
E-mail:1512513865@qq.com;756146646@qq.com;sukerbyz@126.com
作者简介:
刘雯雯(1998-),女,河南郑州人,硕士,主要从事临床兽医研究,E-mail:1512513865@qq.com
基金资助:
Wenwen LIU1,2(), Faming DONG1,*(
), Yanzhen BI2,3,*(
)
Received:
2024-01-08
Online:
2024-08-23
Published:
2024-08-28
Contact:
Faming DONG, Yanzhen BI
E-mail:1512513865@qq.com;756146646@qq.com;sukerbyz@126.com
摘要:
CRISPR基因编辑技术可以更精准、高效地更改基因组DNA序列,近年来在动植物育种中被广泛应用。实践中对农业生物多性状协同改良的需求越来越大,仅靠对单一基因或位点的改变不能满足上述需求,所以亟需建立一套多基因同步编辑体系,对多个基因进行协同修饰。多个sgRNA同时表达是多基因同步编辑的关键,常见表达策略包括建立多个单顺反子sgRNA并联表达和多顺反子sgRNA串联表达。常用串联表达工具有核酸酶Csy4、tRNA系统以及自裂核酶等。本文对以上多基因编辑技术的优劣进行了分析和总结,探讨了下一步的发展方向,并指出其重要意义和应用前景。
中图分类号:
刘雯雯, 董发明, 毕延震. 多基因编辑技术的发展及其在畜牧种质创新中的应用[J]. 畜牧兽医学报, 2024, 55(8): 3267-3275.
Wenwen LIU, Faming DONG, Yanzhen BI. The Development of Multi-Gene Editing Technology and Its Application in Agricultural Biological Germplasm Innovation[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3267-3275.
1 |
VAN DER OOST J , PATINIOS C . The genome editing revolution[J]. Trends Biotechnol, 2023, 41 (3): 396- 409.
doi: 10.1016/j.tibtech.2022.12.022 |
2 |
KIM Y G , CHA J , CHANDRASEGARAN S . Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain[J]. Proc Natl Acad Sci U S A, 1996, 93 (3): 1156- 1160.
doi: 10.1073/pnas.93.3.1156 |
3 |
CHRISTIAN M , CERMAK T , DOYLE E L , et al. Targeting DNA double-strand breaks with TAL effector nucleases[J]. Genetics, 2010, 186 (2): 757- 761.
doi: 10.1534/genetics.110.120717 |
4 |
MILLER J C , TAN S Y , QIAO G J , et al. A TALE nuclease architecture for efficient genome editing[J]. Nat Biotechnol, 2011, 29 (2): 143- 148.
doi: 10.1038/nbt.1755 |
5 |
CONG L , RAN F A , COX D , et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339 (6121): 819- 823.
doi: 10.1126/science.1231143 |
6 |
DONOHOUE P D , BARRANGOU R , MAY A P . Advances in industrial biotechnology using CRISPR-cas systems[J]. Trends Biotechnol, 2018, 36 (2): 134- 146.
doi: 10.1016/j.tibtech.2017.07.007 |
7 |
张佳珊, 谭韬. CRISPR-Cas9系统编辑DNA诱导基因敲除的发展及优缺点[J]. 中国免疫学杂志, 2019, 35 (6): 767- 770.
doi: 10.3969/j.issn.1000-484X.2019.06.025 |
ZHANG J S , TAN T . Development of CRISPR-Cas9 system edit DNA and induce targeted knockout as well advantages and disadvantages[J]. Chinese Journal of Immunology, 2019, 35 (6): 767- 770.
doi: 10.3969/j.issn.1000-484X.2019.06.025 |
|
8 | 于海颖, 路永强, 张鲁, 等. CRISPR/Cas9系统在基因编辑猪生产中的应用[J]. 黑龙江动物繁殖, 2022, 30 (1): 34- 40. |
YU H Y , LU Y Q , ZHANG L , et al. Application of the CRISPR/Cas9 system to produce gene-edited pigs[J]. Heilongjiang Journal of Animal Reproduction, 2022, 30 (1): 34- 40. | |
9 |
MIYAGAWA S , MATSUNARI H , WATANABE M , et al. Generation of α1, 3-galactosyltransferase and cytidine monophospho-N-acetylneuraminic acid hydroxylase gene double-knockout pigs[J]. J Reprod Dev, 2015, 61 (5): 449- 457.
doi: 10.1262/jrd.2015-058 |
10 |
RICHTER A , KUROME M , KESSLER B , et al. Potential of primary kidney cells for somatic cell nuclear transfer mediated transgenesis in pig[J]. BMC Biotechnol, 2012, 12, 84.
doi: 10.1186/1472-6750-12-84 |
11 |
SUZUKI S , IWAMOTO M , SAITO Y , et al. Il2rg gene-targeted severe combined immunodeficiency pigs[J]. Cell Stem Cell, 2012, 10 (6): 753- 758.
doi: 10.1016/j.stem.2012.04.021 |
12 |
GUO X C , GENG L S , JIANG C Q , et al. Multiplexed genome engineering for porcine fetal fibroblasts with gRNA-tRNA arrays based on CRISPR/Cas9[J]. Anim Biotechnol, 2023, 34 (9): 4703- 4712.
doi: 10.1080/10495398.2023.2187402 |
13 |
DONG F P , XIE K B , CHEN Y Y , et al. Polycistronic tRNA and CRISPR guide-RNA enables highly efficient multiplexed genome engineering in human cells[J]. Biochem Biophys Res Commun, 2017, 482 (4): 889- 895.
doi: 10.1016/j.bbrc.2016.11.129 |
14 | 樊祥瑞, 王俊燕, 梁丽亚, 等. 基于CRISPR/Cas系统的多重基因编辑与调控技术[J]. 生物工程学报, 2023, 39 (6): 2449- 2464. |
FAN X R , WANG J Y , LIANG L Y , et al. Multiplex gene editing and regulation techniques based on CRISPR/Cas system[J]. Chinese Journal of Biotechnology, 2023, 39 (6): 2449- 2464. | |
15 | 郎楠, 梁洛瑜, 汪军丽, 等. CRISPR-Cas9多基因编辑技术在植物研究中的应用[J]. 分子植物育种, 2023, 21 (8): 2665- 2670. |
LANG N , LIANG L Y , WANG J L , et al. Application of CRISPR-Cas9 enabled multiplex gene editing in plant research[J]. Molecular Plant Breeding, 2023, 21 (8): 2665- 2670. | |
16 |
FENG X , ZHAO D D , ZHANG X L , et al. CRISPR/Cas9 assisted multiplex genome editing technique in Escherichia coli[J]. Biotechnol J, 2018, 13 (9): e1700604.
doi: 10.1002/biot.201700604 |
17 |
GUO X C , GENG L S , JIANG C Q , et al. Multiplexed genome engineering for porcine fetal fibroblasts with gRNA-tRNA arrays based on CRISPR/Cas9[J]. Anim Biotechnol, 2023, 34 (9): 4703- 4712.
doi: 10.1080/10495398.2023.2187402 |
18 |
SAKUMA T , NISHIKAWA A , KUME S , et al. Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system[J]. Sci Rep, 2014, 4, 5400.
doi: 10.1038/srep05400 |
19 | ALOK A , CHAUHAN H , UPADHYAY S K , et al. Compendium of plant-specific CRISPR vectors and their technical advantages[J]. Life (Basel), 2021, 11 (10): 1021. |
20 | 王秉政, 张超, 张佳丽, 等. 利用单转录本表达Cas9和sgRNA条件性编辑果蝇基因组[J]. 遗传, 2023, 45 (7): 593- 601. |
WANG B Z , ZHANG C , ZHANG J L , et al. Conditional editing of the Drosophila melanogaster genome using single transcripts expressing Cas9 and sgRNA[J]. Hereditas (Beijing), 2023, 45 (7): 593- 601. | |
21 | 徐磊, 赵育蓉, 胡悦旻, 等. 基于CRISPR/Cas9系统的多基因敲除载体的构建及其敲除效率检测[J]. 农业生物技术学报, 2022, 30 (5): 1023- 1030. |
XU L , ZHAO Y R , HU Y M , et al. Construction and knockout efficiency detection of multiple knockout vector based on the CRISPR/Cas9 system[J]. Journal of Agricultural Biotechnology, 2022, 30 (5): 1023- 1030. | |
22 |
KOR S D , CHOWDHURY N , KEOT A K , et al. RNA Pol Ⅲ promoters-key players in precisely targeted plant genome editing[J]. Front Genet, 2023, 13, 989199.
doi: 10.3389/fgene.2022.989199 |
23 |
REIS A C , HALPER S M , VEZEAU G E , et al. Simultaneous repression of multiple bacterial genes using nonrepetitive extra-long sgRNA arrays[J]. Nat Biotechnol, 2019, 37 (11): 1294- 1301.
doi: 10.1038/s41587-019-0286-9 |
24 |
ZHANG Z J , MAO Y F , HA S , et al. A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis[J]. Plant Cell Rep, 2016, 35 (7): 1519- 1533.
doi: 10.1007/s00299-015-1900-z |
25 |
ZHANG J Q , GUO J X , WU X J , et al. Optimization of sgRNA expression strategy to generate multiplex gene-edited pigs[J]. Zool Res, 2022, 43 (6): 1005- 1008.
doi: 10.24272/j.issn.2095-8137.2022.244 |
26 |
XING H L , DONG L , WANG Z P , et al. A CRISPR/Cas9 toolkit for multiplex genome editing in plants[J]. BMC Plant Biol, 2014, 14, 327.
doi: 10.1186/s12870-014-0327-y |
27 |
NIE L H , DAS THAKUR M , WANG Y M , et al. Regulation of U6 promoter activity by transcriptional interference in viral vector-based RNAi[J]. Genomics Proteomics Bioinformatics, 2010, 8 (3): 170- 179.
doi: 10.1016/S1672-0229(10)60019-8 |
28 | 卢挥, 张启, 于思礼, 等. 谷氨酸棒杆菌中基于CRISPR/Cas9的多位点碱基编辑系统的优化[J]. 生物工程学报, 2022, 38 (2): 780- 795. |
LU H , ZHANG Q , YU S L , et al. Optimization of CRISPR/Cas9-based multiplex base editing in Corynebacterium glutamicum[J]. Chinese Journal of Biotechnology, 2022, 38 (2): 780- 795. | |
29 |
GU H Q , LIAN B , YUAN Y X , et al. A 5' tRNA-Ala-derived small RNA regulates anti-fungal defense in plants[J]. Sci China Life Sci, 2022, 65 (1): 1- 15.
doi: 10.1007/s11427-021-2017-1 |
30 |
SINGH J , SHARMA D , BRAR G S , et al. CRISPR/Cas tool designs for multiplex genome editing and its applications in developing biotic and abiotic stress-resistant crop plants[J]. Mol Biol Rep, 2022, 49 (12): 11443- 11467.
doi: 10.1007/s11033-022-07741-2 |
31 |
ZALATAN J G , LEE M E , ALMEIDA R , et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds[J]. Cell, 2015, 160 (1-2): 339- 350.
doi: 10.1016/j.cell.2014.11.052 |
32 |
PORT F , BULLOCK S L . Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNAs[J]. Nat Methods, 2016, 13 (10): 852- 854.
doi: 10.1038/nmeth.3972 |
33 |
QI W W , ZHU T , TIAN Z R , et al. High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize[J]. BMC Biotechnol, 2016, 16 (1): 58.
doi: 10.1186/s12896-016-0289-2 |
34 |
MINKENBERG B , XIE K B , YANG Y N . Discovery of rice essential genes by characterizing a CRISPR-edited mutation of closely related rice MAP kinase genes[J]. Plant J, 2017, 89 (3): 636- 648.
doi: 10.1111/tpj.13399 |
35 |
XIE K B , MINKENBERG B , YANG Y N . Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system[J]. Proc Natl Acad Sci U S A, 2015, 112 (11): 3570- 3575.
doi: 10.1073/pnas.1420294112 |
36 |
HUANG S S , ZHANG Z W , TAO W Y , et al. Broadening prime editing toolkits using RNA-Pol-II-driven engineered pegRNA[J]. Mol Ther, 2022, 30 (9): 2923- 2932.
doi: 10.1016/j.ymthe.2022.07.002 |
37 |
MUSHTAQ M , AHMAD DAR A , SKALICKY M , et al. CRISPR-based genome editing tools: insights into technological breakthroughs and future challenges[J]. Genes (Basel), 2021, 12 (6): 797.
doi: 10.3390/genes12060797 |
38 |
KISHIMOTO T , NISHIMURA K , MORISHITA K , et al. An engineered ligand-responsive Csy4 endoribonuclease controls transgene expression from Sendai virus vectors[J]. J Biol Eng, 2024, 18 (1): 9.
doi: 10.1186/s13036-024-00404-9 |
39 |
HAURWITZ R E , STERNBERG S H , DOUDNA J A . Csy4 relies on an unusual catalytic dyad to position and cleave CRISPR RNA[J]. EMBO J, 2012, 31 (12): 2824- 2832.
doi: 10.1038/emboj.2012.107 |
40 |
FERREIRA R , SKREKAS C , NIELSEN J , et al. Multiplexed CRISPR/Cas9 genome editing and gene regulation using csy4 in Saccharomyces cerevisiae[J]. ACS Synth Biol, 2018, 7 (1): 10- 15.
doi: 10.1021/acssynbio.7b00259 |
41 |
ČERMÁK T , CURTIN S J , GIL-HUMANES J , et al. A multipurpose toolkit to enable advanced genome engineering in plants[J]. Plant Cell, 2017, 29 (6): 1196- 1217.
doi: 10.1105/tpc.16.00922 |
42 |
DOUDNA J A . Ribozymes: the hammerhead swings into action[J]. Curr Biol, 1998, 8 (14): R495- R497.
doi: 10.1016/S0960-9822(98)70316-1 |
43 |
GAO Y B , ZHAO Y D . Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing[J]. J Integr Plant Biol, 2014, 56 (4): 343- 349.
doi: 10.1111/jipb.12152 |
44 |
DEANER M , MEJIA J , ALPER H S . Enabling graded and large-scale multiplex of desired genes using a dual-mode dCas9 activator in Saccharomyces cerevisiae[J]. ACS Synth Biol, 2017, 6 (10): 1931- 1943.
doi: 10.1021/acssynbio.7b00163 |
45 |
NISSIM L , PERLI S D , FRIDKIN A , et al. Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells[J]. Mol Cell, 2014, 54 (4): 698- 710.
doi: 10.1016/j.molcel.2014.04.022 |
46 | ZHANG W W , MATLASHEWSKI G . CRISPR-Cas9-mediated genome editing in Leishmania donovani[J]. mBio, 2015, 6 (4): e00861. |
47 |
LI J H , ZHANG S J , ZHANG R Z , et al. Efficient multiplex genome editing by CRISPR/Cas9 in common wheat[J]. Plant Biotechnol J, 2021, 19 (3): 427- 429.
doi: 10.1111/pbi.13508 |
48 |
WANG P C , ZHANG J , SUN L , et al. High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system[J]. Plant Biotechnol J, 2018, 16 (1): 137- 150.
doi: 10.1111/pbi.12755 |
49 |
URANGA M , ARAGONÉS V , SELMA S , et al. Efficient Cas9 multiplex editing using unspaced sgRNA arrays engineering in a Potato virus X vector[J]. Plant J, 2021, 106 (2): 555- 565.
doi: 10.1111/tpj.15164 |
50 |
魏杰, 刘胜宇. 禽白血病净化防控技术探讨[J]. 山东畜牧兽医, 2023, 44 (11): 47- 49.
doi: 10.3969/j.issn.1007-1733.2023.11.015 |
WEI J , LIU S Y . Discussion on purification and prevention technology of avian leukosis[J]. Shandong Journal of Animal Science and Veterinary Medicine, 2023, 44 (11): 47- 49.
doi: 10.3969/j.issn.1007-1733.2023.11.015 |
|
51 | 梁晶晶. CRISPR多重基因编辑技术敲除鸡TVB基因及新型多重基因编辑体系的建立[D]. 南宁: 广西大学, 2022. |
LIANG J J. Knockout of chicken TVB gene by multiplexed crispr technologies and establishment of a new multiple gene editing[D]. Nanning: Guangxi University, 2022. (in Chinese) | |
52 |
付婷婷, 叶莉, 范君文, 等. 近年来我国动物传染病研究现状分析及展望[J]. 中国比较医学杂志, 2021, 31 (2): 107- 113.
doi: 10.3969/j.issn.1671-7856.2021.02.017 |
FU T T , YE L , FAN J W , et al. The research status of infectious diseases in domestic animals[J]. Chinese Journal of Comparative Medicine, 2021, 31 (2): 107- 113.
doi: 10.3969/j.issn.1671-7856.2021.02.017 |
|
53 |
XU K , ZHOU Y R , MU Y L , et al. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance[J]. eLife, 2020, 9, e57132.
doi: 10.7554/eLife.57132 |
54 |
ZHANG X X , GUO C H . Recent advances in inhibition of porcine reproductive and respiratory syndrome virus through targeting CD163[J]. Front Microbiol, 2022, 13, 1006464.
doi: 10.3389/fmicb.2022.1006464 |
55 |
ZHU J Q , HE X , BERNARD D , et al. Identification of new compounds against PRRSV infection by directly targeting CD163[J]. J Virol, 2023, 97 (5): e0005423.
doi: 10.1128/jvi.00054-23 |
56 | BURKARD C , OPRIESSNIG T , MILEHAM A J , et al. Pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to porcine reproductive and respiratory syndrome virus 1 infection[J]. J Virol, 2018, 92 (16): e00415- 18. |
57 |
BURKARD C , LILLICO S G , REID E , et al. Precision engineering for PRRSV resistance in pigs: macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function[J]. PLoS Pathog, 2017, 13 (2): e1006206.
doi: 10.1371/journal.ppat.1006206 |
58 |
WELCH S K W , CALVERT J G . A brief review of CD163 and its role in PRRSV infection[J]. Virus Res, 2010, 154 (1-2): 98- 103.
doi: 10.1016/j.virusres.2010.07.018 |
59 |
PRATHER R S , WELLS K D , WHITWORTH K M , et al. Knockout of maternal CD163 protects fetuses from infection with porcine reproductive and respiratory syndrome virus (PRRSV)[J]. Sci Rep, 2017, 7 (1): 13371.
doi: 10.1038/s41598-017-13794-2 |
60 |
CHENG S P , WU H G , CHEN Z H . Evolution of transmissible gastroenteritis virus (TGEV): a codon usage perspective[J]. Int J Mol Sci, 2020, 21 (21): 7898.
doi: 10.3390/ijms21217898 |
61 |
CHEN J W , PAN K Y , CHEN Z , et al. Production of porcine aminopeptidase N (pAPN) site-specific edited pigs[J]. Anim Sci J, 2019, 90 (3): 366- 371.
doi: 10.1111/asj.13163 |
62 |
李宝贤, 马广鹏, 葛俊伟, 等. 猪流行性腹泻病毒功能性受体的鉴定[J]. 病毒学报, 2009, 25 (3): 220- 225.
doi: 10.3321/j.issn:1000-8721.2009.03.011 |
LI B X , MA G P , GE J W , et al. Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus[J]. Chinese Journal of Virology, 2009, 25 (3): 220- 225.
doi: 10.3321/j.issn:1000-8721.2009.03.011 |
|
63 |
JI C M , WANG B , ZHOU J Y , et al. Aminopeptidase-N-independent entry of porcine epidemic diarrhea virus into Vero or porcine small intestine epithelial cells[J]. Virology, 2018, 517, 16- 23.
doi: 10.1016/j.virol.2018.02.019 |
64 |
LEE S J . Targeting the myostatin signaling pathway to treat muscle loss and metabolic dysfunction[J]. J Clin Invest, 2021, 131 (9): e148372.
doi: 10.1172/JCI148372 |
65 |
LI R Q , ZENG W , MA M , et al. Precise editing of myostatin signal peptide by CRISPR/Cas9 increases the muscle mass of Liang Guang Small Spotted pigs[J]. Transgenic Res, 2020, 29 (1): 149- 163.
doi: 10.1007/s11248-020-00188-w |
[1] | 陈秀琴, 林甦, 张世忠, 郑敏, 黄梅清. 基于CRISPR/Cas系统的生物传感器在动物疫病诊断中的应用[J]. 畜牧兽医学报, 2024, 55(7): 2859-2876. |
[2] | 邱梅玉, 张雪梅, 张宁, 刘明军. 引导编辑技术的研究进展及应用[J]. 畜牧兽医学报, 2024, 55(4): 1345-1355. |
[3] | 王家丽, 杨帆, 邵文华, 黄梦瑶, 曹伟军, 蒲秀瑛, 张伟, 郑海学. Tollip敲除猪肾细胞系的构建[J]. 畜牧兽医学报, 2024, 55(4): 1810-1818. |
[4] | 张晨俭, 李隐侠, 丁强, 刘伟佳, 王慧利, 何南, 吴家顺, 曹少先. CRISPR/Cas9技术高效制备山羊SOCS2基因编辑胚胎[J]. 畜牧兽医学报, 2024, 55(1): 129-141. |
[5] | 杨芷翊, 王新凯, 史玉婷, 付思源, 张钰炘, 曹琛福, 贾伟新. 基于RT-RAA的禽流感H5亚型核酸CRISPR-Cas13a检测方法的建立[J]. 畜牧兽医学报, 2023, 54(9): 3803-3811. |
[6] | 刘华, 殷冬冬, 邵颖, 宋祥军, 王振宇, 潘孝成, 涂健, 何长生, 朱良强, 祁克宗. 猪流行性腹泻病毒RAA-CRISPR/Cas13a检测方法的建立与初步应用[J]. 畜牧兽医学报, 2023, 54(9): 3991-3997. |
[7] | 费晓钰, 石超群, 刘雪明, 苏峰, 姜运良. CRISPR/Cas9系统介导的猪MRC1修饰基因降低PCV2复制的研究[J]. 畜牧兽医学报, 2023, 54(3): 934-946. |
[8] | 陈俊贞, 权冉, 付强, 葛丽娟, 袁圆圆, 张成远, 李建林, 史慧君. 热休克蛋白HSP90B1影响牛病毒性腹泻病毒复制的研究[J]. 畜牧兽医学报, 2023, 54(2): 683-693. |
[9] | 郜平平, 付金玉, 王丽仰, 史硕博, 张跃平, 张迪. 基于RPA-CRISPR/Cas12a技术快速检测犬猫皮肤癣菌方法的建立[J]. 畜牧兽医学报, 2023, 54(11): 4702-4711. |
[10] | 张硕, 周雨潇, 吴海波, 索伦. 长效CRISPR/Cas9基因编辑结局的动态追踪研究[J]. 畜牧兽医学报, 2023, 54(10): 4196-4208. |
[11] | 邓敏儿, 李娜, 郭亚琼, 冯耀宇, 肖立华. CRISPR/Cas9系统在寄生原虫基因编辑中的应用[J]. 畜牧兽医学报, 2023, 54(1): 69-79. |
[12] | 赵为民, 王慧利, 曹少先, 郭日红, 王泽平, 陈哲, 徐奎, 付言峰, 李碧侠, 任守文, 程金花. 猪CD163基因的单碱基编辑研究[J]. 畜牧兽医学报, 2022, 53(4): 1041-1050. |
[13] | 李兆龙, 张惠芳, 丰志华, 方舟. 携带CRISPR/Cas9的重组腺联病毒对伪狂犬病病毒感染小鼠的治疗效应[J]. 畜牧兽医学报, 2022, 53(3): 834-846. |
[14] | 罗俊, 刘金玲, 郑鹿平, 罗琴, 滕蔓. 家禽疱疹病毒CRISPR/Cas9基因编辑最新研究进展[J]. 畜牧兽医学报, 2022, 53(10): 3335-3344. |
[15] | 王沛, 王萌, 李婷婷, 郑晓楠, 梁勤立, 陈小庆. 弓形虫4个假定蛋白基因缺失株的构建及其基本生物功能学研究[J]. 畜牧兽医学报, 2022, 53(10): 3598-3608. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||