畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (7): 3047-3056.doi: 10.11843/j.issn.0366-6964.2025.07.001
收稿日期:
2024-08-09
出版日期:
2025-07-23
发布日期:
2025-07-25
通讯作者:
曾威,周傲
E-mail:15765099401@163.com;zw8023dfl@hbaas.com;aoqiu@whpu.edu.cn
作者简介:
张帆(2000-),女,黑龙江齐齐哈尔人,硕士,主要从事基因编辑抗病育种研究,E-mail: 15765099401@163.com
基金资助:
ZHANG Fan1,2(), ZENG Wei1,*(
), ZHOU Ao2,*(
)
Received:
2024-08-09
Online:
2025-07-23
Published:
2025-07-25
Contact:
ZENG Wei, ZHOU Ao
E-mail:15765099401@163.com;zw8023dfl@hbaas.com;aoqiu@whpu.edu.cn
摘要:
近年来, 基因编辑技术因其能够实现遗传信息的精确高效修饰而被广泛应用。利用该技术, 通过插入抗病毒基因或敲除病原感染所必需的宿主基因, 可以高效地赋予动物对特定传染病的抵抗力, 加速了高抗病性畜禽新品种的培育进程。在非洲猪瘟等重大畜禽疫病的威胁下, 不仅需要持续强化常规疫病防控手段和抗病措施, 更需要从遗传育种角度提升畜禽品种的固有抗病能力。因此, 培育具备高效抗病性的畜禽品种已成为当前畜牧科学研究与产业实践的迫切需求和核心任务。本文综述了基因编辑技术在畜禽抗病育种领域的应用现状, 并前瞻性地提出了未来可能的发展方向及研究应聚焦的关键领域。
中图分类号:
张帆, 曾威, 周傲. 畜禽基因编辑抗病育种研究进展[J]. 畜牧兽医学报, 2025, 56(7): 3047-3056.
ZHANG Fan, ZENG Wei, ZHOU Ao. Advances in Gene Editing for Disease Resistance Breeding in Livestock and Poultry[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3047-3056.
表 1
基因编辑抗病育种后抗病效果总结"
物种 Species | 病原体 Pathogen | 靶向基因 Targeting gene | 抗病效果 Disease resistance efficacy | 文献来源 Literature sources |
猪Swine | 非洲猪瘟病毒(ASFV) | RELA(替换) | 对病毒无明显抗病作用但有抑制作用 | [ |
猪Swine | 猪繁殖与呼吸综合征病毒(PRRSV) | CD163基因(敲除) | CD 163敲除猪攻毒两周未出现临床症状、病毒血症、抗体反应,对PRRSV具有完全抵抗力 | [ |
猪Swine | 猪瘟病毒(CSFV) | MxA(敲入) | 与对照组相比转基因猪尾细胞的病毒基因组拷贝数平均减少74倍 | [ |
猪Swine | 猪瘟病毒(CSFV) | 抗病毒shRNA(敲入) | 与非转基因猪相比在转基因猪中临床症状推迟4~5 d出现 | [ |
猪Swine | 猪瘟病毒(CSFV) | RSAD2(敲除) | 分离的猪成纤维细胞可抑制CSFV的感染,在24~48 hpi时病毒减少量最大 | [ |
猪Swine | 传染性胃肠炎病毒(TGEV) | pAPN(敲除) | 增强病毒感染抑制率 | [ |
猪Swine | 猪流行性腹泻病毒(PEDV) | CMAH(敲除) | 减轻感染严重程度临床症状发生迟缓 | [ |
猪Swine | 伪狂犬病病毒(PRV) | nectin1(敲除) | 在48 hpi时KO细胞病毒基因组拷贝数比WT细胞减少约102倍。其可阻止PRV在细胞间的传播 | [ |
牛Bovine | 口蹄疫病毒(FMDV) | shRNA(敲入) | 对血清O型和血清Asia 1型FMDV的抑制率均超过94% | [ |
牛Bovine | 金黄色葡萄球菌 | Gln125, 232-溶葡萄球菌蛋白基因(敲入) | 10 μL转基因牛奶中溶葡萄球菌在体外的生物活性相当于5 ng重组溶葡萄球菌素,其乳汁具有杀菌作用。 | [ |
牛Bovine | 金黄色葡萄球菌 | HLYZ(敲入) | 向乳腺中注射活菌,非转基因动物中感染数为19/20,转基因动物中无个体被感染 | [ |
牛Bovine | 牛型结核分枝杆菌(Mycobacterium bovis) | SP110(敲入) | 转基因牛巨噬细胞中病原体增殖率与对照组相比减少52.80% | [ |
牛Bovine | 牛型结核分枝杆菌(Mycobacterium bovis) | NRAMP1(敲入) | 对结核病的抗病力有所提升 | [ |
牛Bovine | 溶血分支杆菌(Mycobacterium haemophilum) | CD18(置换) | 白细胞毒素对野生型白细胞的细胞毒性高达1∶32,而高强度白细胞毒素不能裂解基因编辑胎儿的白细胞 | [ |
羊Ovine | 朊病毒(PrP) | PrP基因 | 有待开发 | [ |
禽Avain | 禽白血病病毒(ALV) | TVB受体基因(敲除) | 敲除细胞系获得对病毒的抗性 | [ |
禽Avain | 禽白血病病毒(ALV) | chNHE1(敲除) | 病毒感染13 d后,所有对照组鸡均为阳性而基因敲除鸡没有出现病毒血症。 | [ |
禽Avain | 鸡禽流感病毒(AIV) | ANP32A(敲除) | 病毒在细胞中的增殖减少 | [ |
禽Avain | 沙门菌(Salmonella) | PTPRJ(下调) | 对沙门氏菌的抵抗力提高 | [ |
1 | MUTEEB G , REHMAN M T , SHAHWAN M , et al. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: a narrative review[J]. Pharmaceuticals (Basel), 2023, 16 (11): 1615. |
2 | WANG S , QU Z , HUANG Q , et al. Application of gene editing technology in resistance breeding of livestock[J]. Life, 2022, 12 (7): 1070. |
3 |
田爱爱, 张慧敏, 孙虎强, 等. 我国2018—2020年非洲猪瘟疫情数据分析研究[J]. 南方农机, 2021, 52 (15): 24-26, 31.
doi: 10.3969/j.issn.1672-3872.2021.15.009 |
TIAN A A , ZHANG H M , SUN H Q , et al. Data analysis and research on african swine fever epidemic in China from 2018 to 2020[J]. China Southern Agricultural Machinery, 2021, 52 (15): 24-26, 31.
doi: 10.3969/j.issn.1672-3872.2021.15.009 |
|
4 |
张召议, 包雨鑫, 王慧玲. 牛结核病的病原、临床症状、诊断方法及综合防治措施[J]. 中国动物保健, 2021, 23 (10): 32- 33.
doi: 10.3969/j.issn.1008-4754.2021.10.022 |
ZHANG Z Y , BAO Y X , WANG H L . Pathogen, etiological agent, clinical symptoms, diagnosis methods and comprehensive prevention and control measures of bovine tuberculosis[J]. China Animal Health, 2021, 23 (10): 32- 33.
doi: 10.3969/j.issn.1008-4754.2021.10.022 |
|
5 | 孙艳, 周国燕, 伍天碧, 等. 我国奶牛乳房炎近期研究进展[J]. 中国乳业, 2022 (4): 43- 51. |
SUN Y , ZHOU G Y , WU T B , et al. Recent research progress on mastitis in dairy cows in China[J]. China Dairy Industry, 2022 (4): 43- 51. | |
6 | 姜晓宁, 吴琼, 徐鑫, 等. 2022年家禽疫病流行情况[J]. 养禽与禽病防治, 2023 (4): 18- 23. |
JIANG X N , WU Q , XU X , et al. Epidemiological situation of poultry diseases in 2022[J]. Poultry Husbandry and Disease Control, 2023 (4): 18- 23. | |
7 | 姜增, 何叶峰, 曹伟胜. 国内禽白血病的流行现状和防控净化[J]. 养禽与禽病防治, 2021 (7): 25- 30. |
JIANG Z , HE Y F , CAO W S . Epidemiological status, prevention, control, and eradication of Avian Leukosis in China[J]. Poultry Husbandry and Disease Control, 2021 (7): 25- 30. | |
8 | 陈海云, 林晓, 莫秋月, 等. 精准基因编辑技术培育抗病种猪的发展与评价[J]. 中国畜禽种业, 2023, 19 (2): 68- 72. |
CHEN H Y , LIN X , MO Q Y , et al. Developments and evaluations in cultivating disease-resistant swine breeds through precision gene editing technologies[J]. Chinese Livestock and Poultry Breeding, 2023, 19 (2): 68- 72. | |
9 | 赵雪洋, 李丹妮, 王钰晨, 等. 东湖杂交羊产羔性状的GWAS分析及候选基因GRID2的验证[J]. 畜牧兽医学报, 2023, 54 (11): 4625- 4635. |
ZHAO X Y , LI D N , WANG Y C , et al. GWAS of lambing traits in donghu hybrid sheep and validation of the candidate gene GRID2[J]. Acta Veterinaria et Zootechnica Sinica,, 54 (11): 4625- 4635. | |
10 | 郭莹, 化青春, 虎梦霞, 等. 分子标记辅助选择在作物育种中的应用及展望[J]. 寒旱农业科学, 2023, 2 (9): 785- 790. |
GUO Y , HUA Q C , HU M X , et al. Application and prospects of molecular marker-assisted selection in crop breeding[J]. Journal of Cold-Arid Agricultural Sciences, 2023, 2 (9): 785- 790. | |
11 | 钱韦葛. 居群遗传结构研究中显性标记数据分析方法初探[J]. 遗传学报, 2001 (3): 244- 255. |
QIAN W G . Preliminary exploration of data analysis methods for dominant markers in the study of population genetic structure[J]. Journal of Genetics and Genomics, 2001 (3): 244- 255. | |
12 | 谈成, 边成, 杨达, 等. 基因组选择技术在农业动物育种中的应用[J]. 遗传, 2017, 39 (11): 1033- 1045. |
TAN C , BIAN C , YANG D , et al. Application of genomic selection technology in agricultural animal breeding[J]. Hereditas (Beijing), 2017, 39 (11): 1033- 1045. | |
13 | 张顺进, 寇浩玮, 丁晓婷, 等. 全基因组选择技术在反刍动物遗传育种中的研究进展及其应用[J]. 农业生物技术学报, 2021, 29 (3): 571- 578. |
ZHANG S J , KOU H W , DING X T , et al. Research progress and application of genome-wide selection technology in the genetic breeding of ruminants[J]. Journal of Agricultural Biotechnology, 2021, 29 (3): 571- 578. | |
14 | WALSH J B . Genomic selection signatures and animal breeding[J]. J Anim Breed Genet, 2021, 138 (1): 1- 3. |
15 | MEUWISSEN T H , HAYES B J , GODDARD M E . Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics, 2001, 157 (4): 1819- 1829. |
16 | VARSHNEY R K , TERAUCHI R , MCCOUCH S R . Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding[J]. PLoS Biol, 2014, 12 (6): e1001883. |
17 | COLLARD B C , MACKILL D J . Marker-assisted selection: an approach for precision plant breeding in the twenty-first century[J]. Philos Trans R Soc Lond B Biol Sci, 2008, 363 (1491): 557- 572. |
18 | 徐景, 杨光, 江美祺, 等. CRISPR/Cas9技术在畜禽育种中的研究进展[J]. 中国畜牧兽医, 2022, 49 (4): 1374- 1383. |
XU J , YANG G , JIANG M Q , et al. Research progress of CRISPR/Cas9 technology in animal breeding[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49 (4): 1374- 1383. | |
19 | LIU Z , WU T , XIANG G , et al. Enhancing animal disease resistance, production efficiency, and welfare through precise genome editing[J]. Int J Mol Sci, 2022, 23 (13): 7331. |
20 | 刘晋冀, 杨洁鸿, 李莲军. 基因编辑技术的发展及在畜牧业中的应用[J]. 基因组学与应用生物学, 2017, 36 (5): 1953- 1956. |
LIU J J , YANG J H , LI L J . Development of gene editing technology and its application in animal husbandry[J]. Genomics and Applied Biology, 2017, 36 (5): 1953- 1956. | |
21 | YUAN M , GAO Y , HAN J , et al. The development and application of genome editing technology in ruminants: a review[J]. Front. Agric. Sci. Eng, 2020, 7 (2): 171- 180. |
22 | ZHOU S , LENK L J , GAO Y , et al. Generation of sheep with defined FecB(B) and TBXT mutations and porcine blastocysts with KCNJ5(G151R/+) mutation using prime editing[J]. BMC Genomics, 2023, 24 (1): 313. |
23 | LIU Z X , ZHANG S , ZHU H Z , et al. Hydrolytic endonucleolytic ribozyme (HYER) is programmable for sequence-specific DNA cleavage[J]. Science, 2024, 383 (6682): eadh4859.. |
24 |
FERREIRA DA SILVA J , TOU C J , KING E M , et al. Click editing enables programmable genome writing using DNA polymerases and HUH endonucleases[J]. Nat Biotechnol, 2024,
doi: 10.1038/s41587-024-02324-x |
25 | YUAN H , YANG L , ZHANG Y , et al. Current status of genetically modified pigs that are resistant to virus infection[J]. Viruses, 2022, 14 (2): 417. |
26 | PALGRAVE C J , GILMOUR L , LOWDEN C S , et al. Species-specific variation in RELA underlies differences in NF-kappaB activity: a potential role in african swine fever pathogenesis[J]. J Virol, 2011, 85 (12): 6008- 6014. |
27 | BISIMWA P N , ONGUS J R , TONUI R , et al. Resistance to african swine fever virus among African domestic pigs appears to be associated with a distinct polymorphic signature in the RelA gene and upregulation of RelA transcription[J]. Virol J, 2024, 21 (1): 93. |
28 | LILLICO S G , PROUDFOOT C , KING T J , et al. Mammalian interspecies substitution of immune modulatory alleles by genome editing[J]. Sci Rep, 2016, 6, 21645. |
29 | MCCLEARY S , STRONG R , MCCARTHY R R , et al. Substitution of warthog NF-kappaB motifs into RELA of domestic pigs is not sufficient to confer resilience to african swine fever virus[J]. Sci Rep, 2020, 10 (1): 8951. |
30 | ZHENG Z , XU L , GAO Y , et al. Testing multiplexed anti-ASFV CRISPR-Cas9 in reducing African swine fever virus[J]. Microbiol Spectr, 2024, 12 (7): e0216423. |
31 | LI C , FAN A , LIU Z , et al. Prevalence, time of infection, and diversity of porcine reproductive and respiratory syndrome virus in China[J]. Viruses, 2024, 16 (5): 774. |
32 | CALVERT J G , SLADE D E , SHIELDS S L , et al. CD163 expression confers susceptibility to porcine reproductive and respiratory syndrome viruses[J]. J Virol, 2007, 81 (14): 7371- 7379. |
33 | SANCHEZ-TORRES C , GOMEZ-PUERTAS P , GOMEZ-DEL-MORAL M , et al. Expression of porcine CD163 on monocytes/macrophages correlates with permissiveness to african swine fever infection[J]. Arch Virol, 2003, 148 (12): 2307- 2323. |
34 | POPESCU L , GAUDREAULT N N , WHITWORTH K M , et al. Genetically edited pigs lacking CD163 show no resistance following infection with the african swine fever virus isolate, georgia 2007/1[J]. Virology, 2017, 501, 102- 106. |
35 | WHITWORTH K M , ROWLAND R R , EWEN C L , et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus[J]. Nat Biotechnol, 2016, 34 (1): 20- 22. |
36 | YANG H , ZHANG J , ZHANG X , et al. CD163 knockout pigs are fully resistant to highly pathogenic porcine reproductive and respiratory syndrome virus[J]. Antiviral Res, 2018, 151, 63- 70. |
37 | 魏迎辉, 刘志国, 徐奎, 等. CD163双等位基因编辑猪的制备及传代[J]. 中国农业科学, 2018, 51 (4): 770- 777. |
WEI Y H , LIU Z G , XU K , et al. Generation and propagation of CD163 biallelically edited pigs[J]. Scientia Agricultura Sinica, 2018, 51 (4): 770- 777. | |
38 | CHEN J , WANG H , BAI J , et al. Generation of pigs resistant to highly pathogenic-porcine reproductive and respiratory syndrome virus through gene editing of CD163[J]. Int J Biol Sci, 2019, 15 (2): 481- 492. |
39 | WANG H , SHEN L , CHEN J , et al. Deletion of CD163 exon 7 confers resistance to highly pathogenic porcine reproductive and respiratory viruses on pigs[J]. Int J Biol Sci, 2019, 15 (9): 1993- 2005. |
40 | BURKARD C , OPRIESSNIG T , MILEHAM A J , et al. Pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to porcine reproductive and respiratory syndrome virus 1 infection[J]. J Virol, 2018, 92 (16): e00415- 18. |
41 | 王慧, 冯保亮, 吴丹, 等. CD163基因在猪繁殖与呼吸综合征抗病育种中的研究进展[J]. 畜牧兽医学报, 2023, 54 (8): 3127- 3138. |
WANG H , FENG B L , WU D , et al. Research progress on CD163 gene in disease-resistant breeding against porcine reproductive and respiratory syndrome[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (8): 3127- 3138. | |
42 | GUO C , WANG M , ZHU Z , et al. Highly efficient generation of pigs harboring a partial deletion of the CD163 SRCR5 domain, which are fully resistant to porcine reproductive and respiratory syndrome virus 2 infection[J]. Front Immunol, 2019, 10, 1846. |
43 | 梁国濠, 胡丹丹, 钟海文, 等. CD163基因敲除猪对胸膜肺炎放线杆菌、猪链球菌和副猪嗜血杆菌的易感性研究[J]. 畜牧兽医学报, 2024, 55 (12): 5478- 5488. |
LIANG G H , HU D D , ZHONG H W , et al. Susceptibility of CD163 gene knockout pigs to Actinobacillus pleuropneumoniae, Streptococcus suis, and Haemophilus parasuis[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (12): 5478- 5488. | |
44 | WU K , LI B , ZHANG X , et al. CSFV restricts necroptosis to sustain infection by inducing autophagy/mitophagy-targeted degradation of RIPK3[J]. Microbiol Spectr, 2024, 12 (1): e0275823.. |
45 | ZHAO Y , WANG T , YAO L , et al. Classical swine fever virus replicated poorly in cells from MxA transgenic pigs[J]. BMC Vet Res, 2016, 12 (1): 169. |
46 | XIE Z , PANG D , YUAN H , et al. Genetically modified pigs are protected from classical swine fever virus[J]. PLoS Pathog, 2018, 14 (12): e1007193. |
47 | XIE Z , JIAO H , XIAO H , et al. Generation of pRSAD2 gene knock-in pig via CRISPR/Cas9 technology[J]. Antiviral Res, 2020, 174, 104696. |
48 | WANG D , FANG L , XIAO S . Porcine epidemic diarrhea in China[J]. Virus Res, 2016, 226, 7- 13. |
49 | 陈杰, 黄小波, 张雨迪, 等. 冠状病毒的氨基肽酶N受体的研究进展[J]. 中国人兽共患病学报, 2016, 32 (1): 89- 94. |
CHEN J , HUANG X B , ZHANG Y D , et al. Research progress on Aminopeptidase N receptor of coronaviruses[J]. Chinese Journal of Zoonoses, 2016, 32 (1): 89- 94. | |
50 | DELMAS B , GELFI J , L 'HARIDON R , et al. Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV[J]. Nature, 1992, 357 (6377): 417- 420. |
51 | LUO L , WANG S , ZHU L , et al. Aminopeptidase N-null neonatal piglets are protected from transmissible gastroenteritis virus but not porcine epidemic diarrhea virus[J]. Sci Rep, 2019, 9 (1): 13186. |
52 | WHITWORTH K M , ROWLAND R R R , PETROVAN V , et al. Resistance to coronavirus infection in amino peptidase N-deficient pigs[J]. Transgenic Res, 2019, 28 (1): 21- 32. |
53 | ZHANG J , WU Z , YANG H . Aminopeptidase N knockout pigs are not resistant to porcine epidemic diarrhea virus infection[J]. Virol Sin, 2019, 34 (5): 592- 595. |
54 | XU K , ZHOU Y , MU Y , et al. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance[J]. Elife, 2020, 9, e57132. |
55 | TU C F , CHUANG C K , HSIAO K H , et al. Lessening of porcine epidemic diarrhoea virus susceptibility in piglets after editing of the CMP-N-glycolylneuraminic acid hydroxylase gene with CRISPR/Cas9 to nullify N-glycolylneuraminic acid expression[J]. PLoS One, 2019, 14 (5): e0217236. |
56 | PRICE A A , SAMPSON T R , RATNER H K , et al. Cas9-mediated targeting of viral RNA in eukaryotic cells[J]. Proc Natl Acad Sci U S A, 2015, 112 (19): 6164- 6169. |
57 | ABUDAYYEH O O , GOOTENBERG J S , KONERMANN S , et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 2016, 353 (6299): aaf5573. |
58 | SMARGON A A , COX D B T , PYZOCHA N K , et al. Cas13b is a type Ⅵ-B CRISPR-associated RNA-guided rnase differentially regulated by accessory proteins Csx27 and Csx28[J]. Mol Cell, 2017, 65 (4): 618- 30 e7. |
59 | ABBOTT T R , DHAMDHERE G , LIU Y , et al. Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza[J]. Cell, 2020, 181 (4): 865- 876 e12. |
60 | MYHRVOLD C , FREIJE C A , GOOTENBERG J S , et al. Field-deployable viral diagnostics using CRISPR/Cas13[J]. Science, 2018, 360 (6387): 444- 448. |
61 | YAN W X , CHONG S , ZHANG H , et al. Cas13d is a compact RNA-targeting type Ⅵ CRISPR effector positively modulated by a WYL-domain-containing accessory protein[J]. Mol Cell, 2018, 70 (2): 327- 339 e5. |
62 | ZHENG H H , FU P F , CHEN H Y , et al. Pseudorabies virus: from pathogenesis to prevention strategies[J]. Viruses, 2022, 14 (8): 1638. |
63 | HUANG Y , LI Z , SONG C , et al. Resistance to pseudorabies virus by knockout of nectin1/2 in pig cells[J]. Arch Virol, 2020, 165 (12): 2837- 2846. |
64 | HU W , ZHENG H , LI Q , et al. shRNA transgenic swine display resistance to infection with the foot-and-mouth disease virus[J]. Sci Rep, 2021, 11 (1): 16377. |
65 | 王家丽, 杨帆, 邵文华, 等. Tollip敲除猪肾细胞系的构建[J]. 畜牧兽医学报, 2024, 55 (4): 1810- 1818. |
WANG J L , YANG F , SHAO W H , et al. Generation of Tollip-Knockout porcine kidney cell line[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (4): 1810- 1818. | |
66 | JAYAKUMAR J , KUMAR V A , BISWAS L , et al. Therapeutic applications of lysostaphin against Staphylococcus aureus[J]. J Appl Microbiol, 2021, 131 (3): 1072- 1082. |
67 | LIU X , WANG Y , GUO W , et al. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows[J]. Nat Commun, 2013, 4, 2565. |
68 | LIU X , WANG Y , TIAN Y , et al. Generation of mastitis resistance in cows by targeting human lysozyme gene to beta-casein locus using zinc-finger nucleases[J]. Biological Sciences, 2014, 281 (1780): 20133368. |
69 | WU H , WANG Y , ZHANG Y , et al. TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis[J]. Proc Natl Acad Sci U S A, 2015, 112 (13): E1530- 1539. |
70 | 顾克翠. 猪肺泡巨噬细胞NRAMP1基因启动子克隆及特异性表达的功能验证[D]. 南京: 南京农业大学, 2011. |
GU K C. Cloning of the NRAMP1 Gene promoter in porcine alveolar macrophages and functional verification of its specific expression[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese) | |
71 | GAO Y , WU H , WANG Y , et al. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects[J]. Genome Biol, 2017, 18 (1): 13. |
72 | YUAN M , ZHANG J , GAO Y , et al. HMEJ-based safe-harbor genome editing enables efficient generation of cattle with increased resistance to tuberculosis[J]. J Biol Chem, 2021, 296, 100497. |
73 | HOLDER A , GARTY R , ELDER C , et al. Analysis of genetic variation in the bovine SLC11A1 gene, its influence on the expression of NRAMP1 and potential association with resistance to bovine tuberculosis[J]. Front Microbiol, 2020, 11, 1420. |
74 | SHANTHALINGAM S , TIBARY A , BEEVER J E , et al. Precise gene editing paves the way for derivation of Mannheimia haemolytica leukotoxin-resistant cattle[J]. Proc Natl Acad Sci U S A, 2016, 113 (46): 13186- 13190. |
75 | EID S , LEE S , VERKUYL C E , et al. The Importance of prion research[J]. Biochem Cell Biol, 2024, 102 (6): 448- 471. |
76 | KALDS P , ZHOU S , CAI B , et al. Sheep and goat genome engineering: from random transgenesis to the CRISPR Era[J]. Front Genet, 2019, 10, 750. |
77 | LEE H J , LEE K Y , PARK Y H , et al. Acquisition of resistance to avian leukosis virus subgroup B through mutations on tvb cysteine-rich domains in DF-1 chicken fibroblasts[J]. Vet Res, 2017, 48 (1): 48. |
78 | LEE H J , LEE K Y , JUNG K M , et al. Precise gene editing of chicken Na+/H+ exchange type 1 (chNHE1) confers resistance to avian leukosis virus subgroup J (ALV-J)[J]. Dev Comp Immunol, 2017, 77, 340- 349. |
79 | KOSLOVA A , TREFIL P , MUCKSOVA J , et al. Precise CRISPR/Cas9 editing of the NHE1 gene renders chickens resistant to the J subgroup of avian leukosis virus[J]. Proc Natl Acad Sci U S A, 2020, 117 (4): 2108- 2112. |
80 | WILLE M , BARR I G . Resurgence of avian influenza virus[J]. Science, 2022, 376 (6592): 459- 460. |
81 | PARK Y H , WOO S J , CHUNGU K , et al. Asp149 and Asp152 in chicken and human ANP32A play an essential role in the interaction with influenza viral polymerase[J]. FASEB J, 2021, 35 (6): e21630. |
82 | FOLEY S L , JOHNSON T J , RICKE S C , et al. Salmonella pathogenicity and host adaptation in chicken-associated serovars[J]. Microbiol Mol Biol Rev, 2013, 77 (4): 582- 607. |
83 | WANG J , ZHANG J , WANG Q , et al. A heterophil/lymphocyte-selected population reveals the phosphatase PTPRJ is associated with immune defense in chickens[J]. Commun Biol, 2023, 6 (1): 196. |
84 | 张晨俭, 李隐侠, 丁强, 等. CRISPR/Cas9技术高效制备山羊SOCS2基因编辑胚胎[J]. 畜牧兽医学报, 2024, 55 (1): 129- 141. |
ZHANG C J , LI Y X , DING Q , et al. Efficient generation of SOCS2 Gene-edited goat embryos via CRISPR/Cas9 technology[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (1): 129- 141. | |
85 | 郭全娟, 韩秋菊, 张建. CRISPR/Cas9技术的脱靶效应及优化策略[J]. 生物化学与生物物理进展, 2018, 45 (8): 798- 807. |
GUO Q J , HAN Q J , ZHANG J . Off-target Effects and Optimization Strategies of CRISPR/Cas9 Technology[J]. Progress in Biochemistry and Biophysics, 2018, 45 (8): 798- 807. |
[1] | 秦小霞, 甘海清, 佘高进, 刘勇, 黄兴国, 陈丽蓉, 杨玲媛. 油茶籽粕的活性成分、生物学功能及其在畜禽生产中的应用研究进展[J]. 畜牧兽医学报, 2025, 56(5): 2070-2081. |
[2] | 李晓晗, 李桂萍, 霍彩云, 张启龙, 孙英健, 孙惠玲. Ⅱ类CRISPR/Cas系统及其在细菌合成生物学中的应用[J]. 畜牧兽医学报, 2025, 56(4): 1608-1620. |
[3] | 王卓, 赵雨薇, 屠焰, 刁其玉, 崔凯. β-防御素的生物学特性及其在调控动物肠道屏障中的研究进展[J]. 畜牧兽医学报, 2025, 56(3): 995-1005. |
[4] | 解雅茹, 金昊延, 孔辰, 蔡蓓, 张令锴. CRISPR/Cas9系统在家畜生殖细胞中的研究进展[J]. 畜牧兽医学报, 2025, 56(2): 479-491. |
[5] | 包斌武, 邹惠影, 李俊良, 高晨, 高会江, 杜振伟, 张博玉, 李俊雅, 高雪. 基因编辑技术的研究进展[J]. 畜牧兽医学报, 2025, 56(1): 1-14. |
[6] | 常萱, 魏冰妮, 张小丽, 赵中权, 陈俊材. 畜禽胃肠道共生真菌研究进展[J]. 畜牧兽医学报, 2025, 56(1): 63-73. |
[7] | 刘雯雯, 董发明, 毕延震. 多基因编辑技术的发展及其在畜牧种质创新中的应用[J]. 畜牧兽医学报, 2024, 55(8): 3267-3275. |
[8] | 梁瑞英, 索静霞, 梁琳, 刘贤勇, 丁家波, 索勋, 汤新明. 艾美耳球虫的遗传操作:平台建立、应用与展望[J]. 畜牧兽医学报, 2024, 55(8): 3362-3373. |
[9] | 王进部, 李佳, 任德明, 王立贤, 王立刚. 机器学习在畜禽基因组选择中的应用进展[J]. 畜牧兽医学报, 2024, 55(7): 2775-2785. |
[10] | 王亚鑫, 王璟, 田学凯, 杨公社, 于太永. 多组学技术在畜禽重要经济性状研究中的应用[J]. 畜牧兽医学报, 2024, 55(5): 1842-1853. |
[11] | 段益欣, 张林云, 赵永聚. SNP遗传力估计方法、影响因素及其在畜禽育种中的应用[J]. 畜牧兽医学报, 2024, 55(5): 1854-1865. |
[12] | 李剑南, 袁利明, 华进联. CD46基因在家畜抗病育种中的应用研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1866-1874. |
[13] | 武上杰, 栾园园, 王明坤, 张贺春, 于波, 马月辉, 蒋琳, 何晓红. 绵羊布鲁氏菌病抗病育种研究进展[J]. 畜牧兽医学报, 2024, 55(3): 882-893. |
[14] | 张多, 滕蔓, 张卓, 刘金玲, 郑鹿平, 各思雨, 韩放, 罗琴, 柴书军, 赵东, 余祖华, 罗俊. 一株马立克病病毒特超强变异株meq基因编辑缺失候选疫苗毒株的构建与鉴定[J]. 畜牧兽医学报, 2024, 55(12): 5672-5683. |
[15] | 张学富, 陈运通, 范文瑞, 张子博, 于蒙蒙, 王素艳, 祁小乐, 李留安, 高玉龙. 鸡chNHE1精准基因编辑细胞系的构建及其抗ALV-J感染的研究[J]. 畜牧兽医学报, 2024, 55(11): 5238-5246. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||