[1] FU K Y, CHEN X, SHOU N, et al. Swainsonine induces liver inflammation in mice via disturbance of gut microbiota and bile acid metabolism[J]. J Agric Food Chem, 2023, 71:1758-1767. [2] WANG S, GUO Y Z, YANG C, et al. Swainsonine triggers paraptosis via ER stress and mapk signaling pathway in rat primary renal tubular epithelial cells[J]. Front Pharmacol, 2021, 12: 715285. [3] LIU Y L, ZHANG S H, WANG W N, et al. Swainsonine-induced vacuolar degeneration is regulated by mTOR-mediated autophagy in HT22 cells[J]. Toxicol Lett, 2023, 373: 41-52. [4] SILVEIRA C R F, CIPELLI M, MANZINE C, et al. Swainsonine, an alpha-mannosidase inhibitor, may worsen cervical cancer progression through the increase in myeloid derived suppressor cells population[J]. PLoS One, 2019, 14: e0213184. [5] REN S E, FAN C, ZHANG L Z, et al. The plant secondary compound swainsonine reshapes gut microbiota in plateau pikas (Ochotona curzoniae)[J]. Appl Microbiol Biotechnol, 2021, 105: 6419-6433. [6] LU H, QUAN H Y, REN Z H, et al. The genome of Undifilum oxytropis provides insights into swainsonine biosynthesis and locoism[J]. Sci Rep, 2016,6:30760. [7] COOK D, DONZELLI B G G, CREAMER R, et al. Swainsonine biosynthesis genes in diverse symbiotic and pathogenic fungi[J]. G3 (Bethesda), 2017, 7: 1791-1797. [8] LI D, ZHAO X L, LU P, et al. The Effects of swnH1 gene function of endophytic fungus Alternaria oxytropis OW 7.8 on its swainsonine biosynthesis[J]. Microorganisms, 2024, 12(10):2081. [9] LUO F F, HONG S, CHEN B, et al. Unveiling of swainsonine biosynthesis via a multibranched pathway in fungi[J] ACS Chem Biol, 2020,15(9): 2476-2484. [10] 孙 璐. PKS基因在金龟子绿僵菌合成苦马豆素中的作用研究[D].杨凌:西北农林科技大学,2021. SUN L. The effect on PKS gene in swainsonine synthesis of Metarhizium anisopliae[D]. Yangling: Northwestern Agriculture and Forestry University, 2021. (in Chinese) [11] BROQUIST H, MASON P, HAGLER W, et al. Identification of swainsonine as a probable contributory mycotoxin in moldy forage mycotoxicosis[J]. Appl Environ Microbiol, 1984, 48: 386-388. [12] 张 雨,朱燕丽,李 博,等. 金龟子绿僵菌发酵液中苦马豆素含量及催化酶基因mRNA表达分析[J].畜牧兽医学报,2020,51(4):881-887. ZHANG Y, ZHU Y L, LI B, et al. mRNA expression analysis of catalytic enzyme gene and content of swainsonine in the fermentation broth of Metarhizium anisopliae[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(4):881-887. (in Chinese) [13] 孙 璐,宋润杰,路 浩,等.SWNR基因在金龟子绿僵菌合成苦马豆素中的作用[J].畜牧兽医学报,2021,52(5):1439-1446. SUN L, SONG R J, LU H, et al. The role of SWNR gene on the biosynthetic pathway of the swainsonine in Metarhizium anisopliae[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(5):1439-1446. (in Chinese) [14] GUO C C, ZHANG L, ZHAO Q Q, et al. Host-species variation and environment influence endophyte symbiosis and mycotoxin levels in Chinese Oxytropis species[J]. Toxins, 2022, 14: 18. [15] SCHMITTGEN T D, LIVAK K J. Analyzing real-time PCR data by the comparative C(T) method[J]. Nat Protoc, 2008, 3: 1101-1108. [16] NODVIG C S, NIELSEN J B, KOGLE M E, et al. A CRISPR-Cas9 system for genetic engineering of filamentous fungi[J]. PLoS One, 2015, 10: e0133085. [17] HUANG E X, ZHANG Y, SUN L, et al. swnk plays an important role in the biosynthesis of swainsonine in Metarhizium anisopliae[J]. Biotechnol Lett, 2023, 45: 509-519. [18] CHEN Y Y, CAI C L, YANG J F, et al. Development of the CRISPR/Cas9 system for the marine-derived fungi Spiromastix sp. SCSIO F190 and Aspergillus sp. SCSIO SX7S7[J]. J Fungi(Basel), 2022, 8(7): 715. [19] DING Q, YE C. Microbial cell factories based on filamentous bacteria, yeasts, and fungi[J]. Microb Cell Fact,2023, 22(1): 20. [20] DICARLO J E, NORVILLE J E, MALI P, et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems[J]. Nucleic Acids Res, 2013, 41: 4336-4343. [21] POHL C, KIEL J A K W, DRIESSEN A J M, et al. CRISPR/Cas9 based genome editing of Penicillium chrysogenum[J]. ACS synth biol, 2016, 5: 754-764. [22] CLEMMENSEN S E, KROMPHARDT K J K, FRANDSEN R J N. Marker-free CRISPR-Cas9 based genetic engineering of the phytopathogenic fungus, Penicillium expansum[J]. Fungal Genet Biol, 2022, 160: 103689. [23] SHI T Q, GAO J, WANG W J, et al. CRISPR/Cas9-based genome editing in the filamentous fungus Fusarium fujikuroi and its application in strain engineering for gibberellic acid production[J]. ACS Synth Biol, 2019, 8: 445-454. [24] LIU R, CHEN L, JIANG Y P, et al. Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system[J]. Cell Discov, 2015, 1: 15007. [25] SCHIMMEL J, MUÑOZ-SUBIRANA N, KOOL H, et al. Modulating mutational outcomes and improving precise gene editing at CRISPR-Cas9-induced breaks by chemical inhibition of end-joining pathways[J]. Cell Rep, 2023, 42: 112019. [26] AMANO M, MIZUGUCHI H, SANO T, et al. Recombinant expression, molecular characterization and crystal structure of antitumor enzyme, L-lysine α-oxidase from Trichoderma viride[J]. J Biochem, 2015, 157(6): 549-59. [27] JIANG C M, LV G B, TU Y Y, et al. Applications of CRISPR/Cas9 in the synthesis of secondary metabolites in filamentous fungi[J]. Front Microbiol, 2021, 12: 638096. [28] LIU W W, AN C Y, SHU X, et al. A dual-plasmid CRISPR/Cas system for mycotoxin elimination in polykaryotic industrial fungi[J]. ACS Synth Biol, 2020, 9(8):2087-2095. [29] ZHANG L, WU R L, MUR L A J, et al. Assembly of high-quality genomes of the locoweed Oxytropis ochrocephala and its endophyte Alternaria oxytropis provides new evidence for their symbiotic relationship and swainsonine biosynthesis[J]. Mol Ecol Resour, 2023, 23: 253-272. [30] LIANG Y, LI S W, SONG X D, et al. Swainsonine producing performance of Alternaria oxytropis was improved by heavy-ion mutagenesis technology[J]. FEMS Microbiol Lett, 2021, 368: fnab047. |