1 |
LIU Z G , WU T W , XIANG G M , et al. Enhancing animal disease resistance, production efficiency, and welfare through precise genome editing[J]. Int J Mol Sci, 2022, 23 (13): 7331.
doi: 10.3390/ijms23137331
|
2 |
XU K , ZHANG X L , LIU Z G , et al. A transgene-free method for rapid and efficient generation of precisely edited pigs without monoclonal selection[J]. Sci China Life Sci, 2022, 65 (8): 1535- 1546.
doi: 10.1007/s11427-021-2058-2
|
3 |
潘东霞, 王辉, 熊本海, 等. CRISPR-Cas9基因编辑技术在牛、羊生产中的应用研究进展[J]. 中国畜牧兽医, 2024, 51 (11): 4880- 4889.
|
|
PAN D X , WANG H , XIONG B H , et al. Research progress on CRISPR-Cas9 gene editing technology in cattle and sheep production[J]. China Animal Husbandry & Veterinary Medicine, 2024, 51 (11): 4880- 4889.
|
4 |
刘志国, 黄雷, 杨丽景, 等. 基因编辑技术在猪生物育种中的研究进展[J]. 中国畜禽种业, 2024, 20 (1): 19- 28.
|
|
LIU Z G , HUANG L , YANG L J , et al. Research progress of gene editing technology in pig breeding[J]. The Chinese Livestock and Poultry Breeding, 2024, 20 (1): 19- 28.
|
5 |
曹慧, 韩博, 孙东晓. 基因编辑技术及其在畜禽遗传育种中的应用研究进展[J]. 中国畜牧杂志, 2024, 60 (7): 6- 12.
|
|
CAO H , HAN B , SUN D X . Research progress on gene editing technology and its application in livestock and poultry genetic breeding[J]. Chinese Journal of Animal Science, 2024, 60 (7): 6- 12.
|
6 |
BURKARD C , LILLICO S G , REID E , et al. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function[J]. PLoS Pathog, 2017, 13 (2): e1006206.
doi: 10.1371/journal.ppat.1006206
|
7 |
PRATHER R S , WELLS K D , WHITWORTH K M , et al. Knockout of maternal CD163 protects fetuses from infection with porcine reproductive and respiratory syndrome virus (PRRSV)[J]. Sci Rep, 2017, 7 (1): 13371.
doi: 10.1038/s41598-017-13794-2
|
8 |
WELLS K D , BARDOT R , WHITWORTH K M , et al. Replacement of porcine CD163 scavenger receptor cysteine-rich domain 5 with a CD163-like homolog confers resistance of pigs to genotype 1 but not genotype 2 porcine reproductive and respiratory syndrome virus[J]. J Virol, 2017, 91 (2): e01521- 16.
|
9 |
BURKARD C , OPRIESSNIG T , MILEHAM A J , et al. Pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to porcine reproductive and respiratory syndrome virus 1 infection[J]. J Virol, 2018, 92 (16): e00415- 18.
|
10 |
魏迎辉, 刘志国, 徐奎, 等. CD163双等位基因编辑猪的制备与传代[J]. 中国农业科学, 2018, 51 (4): 770- 777.
|
|
WEI Y H , LIU Z G , XU K , et al. Generation and propagation of cluster of differentiation 163 biallelic gene editing pigs[J]. Scientia Agricultura Sinica, 2018, 51 (4): 770- 777.
|
11 |
WHITWORTH K M , ROWLAND R R R , PETROVAN V , et al. Resistance to coronavirus infection in amino peptidase N-deficient pigs[J]. Transgenic Res, 2019, 28 (1): 21- 32.
doi: 10.1007/s11248-018-0100-3
|
12 |
LUO L , WANG S H , ZHU L , et al. Aminopeptidase N-null neonatal piglets are protected from transmissible gastroenteritis virus but not porcine epidemic diarrhea virus[J]. Sci Rep, 2019, 9 (1): 13186.
doi: 10.1038/s41598-019-49838-y
|
13 |
XU K , ZHOU Y R , MU Y L , et al. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance[J]. Elife, 2020, 9, e57132.
doi: 10.7554/eLife.57132
|
14 |
WANG K K , TANG X C , LIU Y , et al. Efficient generation of orthologous point mutations in pigs via CRISPR-assisted ssODN-mediated homology-directed repair[J]. Mol Ther Nucleic Acids, 2016, 5 (11)
|
15 |
曾智杰. MSTN基因编辑猪产肉性状和骨骼肌肌纤维类型研究[D]. 合肥: 安徽农业大学, 2020.
|
|
ZENG Z J. Characteristics of meat production traits and skeletal muscle fiber types of MSTN gene editing pigs[D]. Hefei: Anhui Agricultural University, 2020. (in Chinese)
|
16 |
QIAN L L , TANG M X , YANG J Z , et al. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs[J]. Sci Rep, 2015, 5 (1): 14435.
doi: 10.1038/srep14435
|
17 |
REN H Y , XIAO W , QIN X L , et al. Myostatin regulates fatty acid desaturation and fat deposition through MEF2C/miR222/SCD5 cascade in pigs[J]. Commun Biol, 2020, 3 (1): 612.
doi: 10.1038/s42003-020-01348-8
|
18 |
FAN Z Y , LIU Z G , XU K , et al. Long-term, multidomain analyses to identify the breed and allelic effects in MSTN-edited pigs to overcome lameness and sustainably improve nutritional meat production[J]. Sci China Life Sci, 2022, 65 (2): 362- 375.
doi: 10.1007/s11427-020-1927-9
|
19 |
XIANG G H , REN J L , HAI T , et al. Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs[J]. Cell Mol Life Sci, 2018, 75 (4): 4619- 4628.
|
20 |
LIU X F , LIU H B , WANG M , et al. Disruption of the ZBED6 binding site in intron 3 of IGF2 by CRISPR/Cas9 leads to enhanced muscle development in Liang Guang Small Spotted pigs[J]. Transgenic Res, 2019, 28 (1): 141- 150.
doi: 10.1007/s11248-018-0107-9
|
21 |
ZU Y , ZHANG X S , REN J F , et al. Biallelic editing of a lamprey genome using the CRISPR/Cas9 system[J]. Sci Rep, 2016, 6, 23496.
doi: 10.1038/srep23496
|
22 |
LÓPEZ-VILLAR I , AYALA R , WESSELINK J , et al. Simplifying the detection of MUTYH mutations by high resolution melting analysis[J]. BMC Cancer, 2010, 10, 408.
doi: 10.1186/1471-2407-10-408
|
23 |
GUO J G , LI K , JIN L F , et al. A simple and cost-effective method for screening of CRISPR/Cas9-induced homozygous/biallelic mutants[J]. Plant Methods, 2018, 14, 40.
doi: 10.1186/s13007-018-0305-8
|
24 |
GOH S K , MUSAFER A , WITKOWSKI T , et al. Comparison of 3 methodologies for genotyping of small deletion and insertion polymorphisms[J]. Clin Chem, 2016, 62 (7): 1012- 1019.
doi: 10.1373/clinchem.2016.256388
|
25 |
LI S Y , CHENG Q X , LIU J K , et al. CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA[J]. Cell Res, 2018, 28 (4): 491- 493.
doi: 10.1038/s41422-018-0022-x
|
26 |
CHEN J S , MA E , HARRINGTON L B , et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018, 360 (6387): 436- 439.
doi: 10.1126/science.aar6245
|
27 |
刘晓婷, 李鹏, 左柯铭, 等. 基于CRISPR-Cas12a核酸检测研究进展[J]. 动物医学进展, 2024, 45 (8): 94- 98.
|
|
LIU X T , LI P , ZUO K M , et al. Progress on CRISPR Cas12 based nucleic acid detections[J]. Progress in Veterinary Medicine, 2024, 45 (8): 94- 98.
|
28 |
党生, 张帅, 翟景波. CRISPR/Cas12a系统: 核酸检测的多功能工具[J]. 生物化学与生物物理进展, 2024, 51 (4): 785- 796.
|
|
DANG S , ZHANG S , ZHAI J B . The versatile tool: CRISPR/Cas12a system for nucleic acid detection[J]. Progress in Biochemistry and Biophysics, 2024, 51 (4): 785- 796.
|
29 |
周旭, 王思文, 王秀荣. CRISPR-Cas12a在病原快速检测中的应用[J]. 中国兽医科学, 2022, 52 (8): 1031- 1037.
|
|
ZHOU X , WANG S W , WANG X R . Application of CRISPR-Cas12a in rapid detection of pathogens[J]. Chinese Veterinary Science, 2022, 52 (8): 1031- 1037.
|
30 |
热则古丽·艾科拜尔, 张亚平, 刘浩然, 等. 基于RAA-CRISPR/Cas12a建立牛病毒性腹泻病毒的可视化快速检测方法及其初步应用[J]. 中国兽医科学, 2025, 55 (3): 321- 329.
|
|
REZEGULI·AIKEBAIER , ZHANG Y P , LIU H R , et al. Establishment and preliminary application of visualization detection technology for bovine viral diarrhea virus based on RAA-CRISPR/Cas12a[J]. Chinese Veterinary Science, 2025, 55 (3): 321- 329.
|
31 |
郭心龙, 周勇志, 曹杰, 等. 绵羊无浆体LAMP-CRISPR/Cas12a检测方法的建立[J]. 中国兽医科学, 2025, 55 (3): 330- 337.
|
|
GUO X L , ZHOU Y Z , CAO J , et al. Development of LAMP-CRISPR/Cas12a assay for the detection of Anaplasmaovis[J]. Chinese Veterinary Science, 2025, 55 (3): 330- 337.
|
32 |
XIONG D , DAI W J , GONG J J , et al. Rapid detection of SARS-CoV-2 with CRISPR-Cas12a[J]. PLoS Biol, 2020, 18 (12): e3000978.
|
33 |
QU H , ZHANG W J , LI J H , et al. A rapid and sensitive CRISPR-cas12a for the detection of fusobacterium nucleatum[J]. Microbiol Spectr, 2024, 12 (2): e0362923.
|
34 |
MAYURAMART O , NIMSAMER P , RATTANABURI S , et al. Detection of severe acute respiratory syndrome coronavirus 2 and influenza viruses based on CRISPR-Cas12a[J]. Exp Biol Med (Maywood), 2021, 246 (4): 400- 405.
|
35 |
QIN C , LIU J J , ZHU W Q , et al. One-pot visual detection of African swine fever virus using CRISPR-Cas12a[J]. Front Vet Sci, 2022, 9, 962438.
|
36 |
ZHANG K L , SUN Z Y , SHI K D , et al. RPA-CRISPR/Cas12a-based detection of Haemophilus parasuis[J]. Animals (Basel), 2023, 13 (21): 3317.
|
37 |
CAO X Y , CHANG Y B , TAO C Q , et al. Cas12a/Guide RNA-based platforms for rapidly and accurately identifying Staphylococcus aureus and Methicillin-Resistant S. aureus[J]. Microbiol Spectr, 2023, 11 (2): e0487022.
|
38 |
WANG M Y , LIU X J , YANG J T , et al. CRISPR/Cas12a-based biosensing platform for the on-site detection of single-base mutants in gene-edited rice[J]. Front Plant Sci, 2022, 13, 944295.
|
39 |
HUA Y F , WANG C , HUANG J , et al. A simple and efficient method for CRISPR/Cas9-induced mutant screening[J]. J Genet Genomics, 2017, 44 (4): 207- 213.
|
40 |
WANG Z , HUANG C M , WEI S , et al. A CRISPR/Cas12a-mediated sensitive DNA detection system for gene-edited rice[J]. J AOAC Int, 2023, 106 (3): 558- 567.
|
41 |
JANUDIN A A S , KURUP C P , CHEE L Y , et al. Amplification-based CRISPR/Cas12a biosensor targeting the COX1 gene for specific detection of porcine DNA[J]. ACS Omega, 2023, 8 (41): 38212- 38219.
|
42 |
ZHANG H X , ZHANG C X , LU S H , et al. Cas12a-based one-pot SNP detection with high accuracy[J]. Cell Insight, 2023, 2 (2): 100080.
|
43 |
YE X J , LEI B . The current status and trends of DNA extraction[J]. Bioessays, 2023, 45 (8): e2200242.
|
44 |
LIU Y Q , LIN L Y , WEI H G , et al. Design and development of a rapid meat detection system based on RPA-CRISPR/Cas12a-LFD[J]. Curr Res Food Sci, 2023, 7, 100609.
|
45 |
BHATTACHARJEE G , GOHIL N , LAM N L , et al. CRISPR-based diagnostics for detection of pathogens[J]. Prog Mol Biol Transl Sci, 2021, 181, 45- 57.
|
46 |
TANG G Y , ZHANG Z L , TAN W , et al. RT-RPA-Cas12a-based assay facilitates the discrimination of SARS-CoV-2 variants of concern[J]. Sens Actuators B Chem, 2023, 381, 133433.
|