1 |
NAIR V, GIMENO I, DUNN J. Marek's disease[M]//SWAYNE D E, BOULIANNE M, LOGUE C M, et al. Disease of Poultry. Hoboken: John Wiley & Sons, 2020: 550-587.
|
2 |
GATHERER D , DEPLEDGE D P , HARTLEY C A , et al. ICTV virus taxonomy profile: Herpesviridae 2021[J]. J Gen Virol, 2021, 102 (10): 001673.
|
3 |
WITTER R L . Increased virulence of Marek's disease virus field isolates[J]. Avian Dis, 1997, 41 (1): 149- 163.
doi: 10.2307/1592455
|
4 |
TENG M , ZHENG L P , LI H Z , et al. Pathogenicity and pathotype analysis of Henan isolates of Marek's disease virus reveal long-term circulation of highly virulent MDV variant in China[J]. Viruses, 2022, 14 (8): 1651.
doi: 10.3390/v14081651
|
5 |
LIU J L , TENG M , ZHENG L P , et al. Emerging hypervirulent Marek's disease virus variants significantly overcome protection conferred by commercial vaccines[J]. Viruses, 2023, 15 (7): 1434.
doi: 10.3390/v15071434
|
6 |
ZHENG L P , TENG M , LI G X , et al. Current epidemiology and co-infections of avian immunosuppressive and neoplastic diseases in chicken flocks in central China[J]. Viruses, 2022, 14 (12): 2599.
doi: 10.3390/v14122599
|
7 |
LUPIANI B , LEE L F , CUI X P , et al. Marek's disease virus-encoded Meq gene is involved in transformation of lymphocytes but is dispensable for replication[J]. Proc Natl Acad Sci U S A, 2004, 101 (32): 11815- 11820.
doi: 10.1073/pnas.0404508101
|
8 |
BROWN A C , SMITH L P , KGOSANA L , et al. Homodimerization of the Meq viral oncoprotein is necessary for induction of T-cell lymphoma by Marek's disease virus[J]. J Virol, 2009, 83 (21): 11142- 11151.
doi: 10.1128/JVI.01393-09
|
9 |
LEE L F , HEIDARI M , ZHANG H M , et al. Cell culture attenuation eliminates rMd5ΔMeq-induced bursal and thymic atrophy and renders the mutant virus as an effective and safe vaccine against Marek's disease[J]. Vaccine, 2012, 30 (34): 5151- 5158.
doi: 10.1016/j.vaccine.2012.05.043
|
10 |
SUN A J , LUO J , WAN B , et al. Lorf9 deletion significantly eliminated lymphoid organ atrophy induced by meq-deleted very virulent Marek's disease virus[J]. Vet Microbiol, 2019, 235, 164- 169.
doi: 10.1016/j.vetmic.2019.06.020
|
11 |
LIAO Y F , REDDY S M , KHAN Q A , et al. A novel effective and safe vaccine for prevention of Marek's disease caused by infection with a very virulent plus (vv+) Marek's disease virus[J]. Vaccines, 2021, 9 (2): 159.
doi: 10.3390/vaccines9020159
|
12 |
CONRAD S J , OLUWAYINKA E B , HEIDARI M , et al. Deletion of the viral thymidine kinase in a meq-deleted recombinant Marek's disease virus reduces lymphoid atrophy but is less protective[J]. Microorganisms, 2021, 10 (1): 7.
doi: 10.3390/microorganisms10010007
|
13 |
LI Y P , SUN A J , SU S , et al. Deletion of the meq gene significantly decreases immunosuppression in chickens caused by pathogenic Marek's disease virus[J]. Virol J, 2011, 8, 2.
doi: 10.1186/1743-422X-8-2
|
14 |
SU S , CUI N , ZHOU Y , et al. A recombinant field strain of Marek's disease (MD) virus with reticuloendotheliosis virus long terminal repeat insert lacking the meq gene as a vaccine against MD[J]. Vaccine, 2015, 33 (5): 596- 603.
doi: 10.1016/j.vaccine.2014.12.057
|
15 |
张言坤, 韩妮, 孙鹏, 等. 马立克氏病毒meq基因缺失株SC9-1通过自然重组获得meq能力的分析[J]. 病毒学报, 2017, 33 (1): 89- 95.
|
|
ZHANG Y K , HAN N , SUN P , et al. Capacity of the meq-deleted strain Marek's virus SC9-1 to acquire the meq gene by natural recombination[J]. Chinese Journal of Virology, 2017, 33 (1): 89- 95.
|
16 |
SU S , CUI N , LI J , et al. Deletion of the BAC sequences from recombinant meq-null Marek's disease (MD) virus increases immunosuppression while maintaining protective efficacy against MD[J]. Poultry Sci, 2016, 95 (7): 1504- 1512.
doi: 10.3382/ps/pew067
|
17 |
SUN P , CUI N , LIU L Q , et al. Attenuation of a recombinant Marek's disease virus lacking the meq oncogene and evaluation on its immune efficacy against Marek's disease virus[J]. Poultry Sci, 2020, 99 (4): 1939- 1945.
doi: 10.1016/j.psj.2019.11.059
|
18 |
LEE L F , KREAGER K , HEIDARI M , et al. Properties of a meq-deleted rMd5 Marek's disease vaccine: protection against virulent MDV challenge and induction of lymphoid organ atrophy are simultaneously attenuated by serial passage in vitro[J]. Avian Dis, 2013, 57 (2 Suppl): 491- 497.
|
19 |
ZHANG Y P , LIU C J , YAN F H , et al. Recombinant Gallid herpesvirus 2 with interrupted meq genes confers safe and efficacious protection against virulent field strains[J]. Vaccine, 2017, 35 (36): 4695- 4701.
doi: 10.1016/j.vaccine.2017.07.048
|
20 |
张志会, 滕蔓, 郑鹿平, 等. 马立克病基因工程疫苗研究进展[J]. 畜牧与兽医, 2023, 55 (10): 138- 150.
|
|
ZHANG Z H , TENG M , ZHENG L P , et al. Advances in novel genetically engineered vaccines against Marek's disease[J]. Animal Husbandry & Veterinary Medicine, 2023, 55 (10): 138- 150.
|
21 |
TENG M , YAO Y X , NAIR V , et al. Latest advances of virology research using CRISPR/Cas9-based gene-editing technology and its application to vaccine development[J]. Viruses, 2021, 13 (5): 779.
doi: 10.3390/v13050779
|
22 |
罗俊, 刘金玲, 郑鹿平, 等. 家禽疱疹病毒CRISPR/Cas9基因编辑最新研究进展[J]. 畜牧兽医学报, 2022, 53 (10): 3335- 3344.
doi: 10.11843/j.issn.0366-6964.2022.10.007
|
|
LUO J , LIU J L , ZHENG L P , et al. Recent advances in engineering avian herpesviruses by CRISPR/Cas9-based gene editing technology[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (10): 3335- 3344.
doi: 10.11843/j.issn.0366-6964.2022.10.007
|
23 |
滕蔓, 刘金玲, 郑鹿平, 等. CRISPR/Cas9基因编辑技术在病毒学研究中的应用及进展[J]. 病毒学报, 2020, 36 (5): 946- 954.
|
|
TENG M , LIU J L , ZHENG L P , et al. Research progress in application of the CRISPR/Cas9 gene editing system in virology[J]. Chinese Journal of Virology, 2020, 36 (5): 946- 954.
|
24 |
LUO J , TENG M , ZAI X S , et al. Efficient mutagenesis of Marek's disease virus-encoded microRNAs using a CRISPR/Cas9-based gene editing system[J]. Viruses, 2020, 12 (4): 466.
doi: 10.3390/v12040466
|
25 |
滕蔓, 郑鹿平, 刘金玲, 等. 利用CRISPR/Cas9基因编辑技术构建马立克病病毒超强毒株原癌基因meq缺失株及其鉴定[J]. 病毒学报, 2020, 36 (4): 675- 684.
|
|
TENG M , ZHENG L P , LIU J L , et al. Editing of oncogenic meq of very-virulent Marek's disease virus by the CRISPR/Cas9 system[J]. Chinese Journal of Virology, 2020, 36 (4): 675- 684.
|
26 |
王伟东, 滕蔓, 郑鹿平, 等. miR-M11基因编辑对马立克病病毒体外复制的影响[J]. 河南农业科学, 2023, 52 (1): 134- 143.
|
|
WANG W D , TENG M , ZHENG L P , et al. Effect of miR-M11 gene editing on replication of Marek's disease virus in vitro[J]. Journal of Henan Agricultural Sciences, 2023, 52 (1): 134- 143.
|
27 |
楚钰淑, 滕蔓, 周子誉, 等. LAT基因簇miRNA的CRISPR/Cas9基因编辑对马立克病病毒体外复制的影响分析[J]. 病毒学报, 2021, 37 (6): 1428- 1439.
|
|
CHU Y S , TENG M , ZHOU Z Y , et al. CRISPR/Cas9 system-based gene editing of the LAT-clustered MicroRNAs and its influence on in vitro replication of Marek's disease virus[J]. Chinese Journal of Virology, 2021, 37 (6): 1428- 1439.
|
28 |
杨森, 滕蔓, 刘金玲, 等. 鸡马立克病疫苗株CVI988/Rispens meq基因编辑及缺失毒株的构建与鉴定[J]. 畜牧兽医学报, 2020, 51 (8): 1970- 1976.
doi: 10.11843/j.issn.0366-6964.2020.08.021
|
|
YANG S , TENG M , LIU J L , et al. Construction of meq deleted strain by gene editing of Marek's disease vaccine strain CVI988/Rispens via the CRISPR/Cas9 system and identification[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51 (8): 1970- 1976.
doi: 10.11843/j.issn.0366-6964.2020.08.021
|
29 |
TENG M , ZHOU Z Y , YAO Y X , et al. A new strategy for efficient screening and identification of monoclonal antibodies against oncogenic avian Herpesvirus utilizing CRISPR/Cas9-based gene-editing technology[J]. Viruses, 2022, 14 (9): 2045.
doi: 10.3390/v14092045
|
30 |
TENG M , LIU J L , LUO Q , et al. Efficient cross-screening and characterization of monoclonal Antibodies against Marek's disease specific Meq Oncoprotein using CRISPR/Cas9-gene-edited viruses[J]. Viruses, 2023, 15 (4): 817.
doi: 10.3390/v15040817
|
31 |
TENG M , YU Z H , ZHAO P , et al. Putative roles as oncogene or tumour suppressor of the Mid-clustered microRNAs in Gallid alphaherpesvirus 2 (GaHV2) induced Marek's disease lymphomagenesis[J]. J Gen Virol, 2017, 98 (5): 1097- 1112.
doi: 10.1099/jgv.0.000786
|
32 |
马圣明, 滕蔓, 余祖华, 等. 马立克病病毒超强毒株GX0101感染宿主部分病毒基因表达水平及致病阶段分析[J]. 畜牧兽医学报, 2016, 47 (8): 1635- 1644.
doi: 10.11843/j.issn.0366-6964.2016.08.014
|
|
MA S M , TENG M , YU Z H , et al. The viral gene expression profiles and pathogenic phases of the disease caused by very virulent Mdv Strain GX0101[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47 (8): 1635- 1644.
doi: 10.11843/j.issn.0366-6964.2016.08.014
|
33 |
张志会. 基于CRISPR/Cas9系统的马立克病病毒meq基因缺失毒株的构建和鉴定[D]. 郑州: 郑州大学, 2023.
|
|
ZHANG Z H. Construction and characterization of a meq-deleted mutant strain of Marek's disease virus utilizing CRISPR/Cas9-based system[D]. Zhengzhou: Zhengzhou University, 2023. (in Chinese)
|
34 |
DENG Q M , SHI M Y , LI Q H , et al. Analysis of the evolution and transmission dynamics of the field MDV in China during the years 1995-2020, indicating the emergence of a unique cluster with the molecular characteristics of vv+ MDV that has become endemic in southern China[J]. Transbound Emerg Dis, 2021, 68 (6): 3574- 3587.
doi: 10.1111/tbed.13965
|
35 |
SONG B L , ZEB J , HUSSAIN S , et al. A review on the Marek's disease outbreak and its virulence-related meq genovariation in Asia between 2011 and 2021[J]. Animals (Basel), 2022, 12 (5): 540.
|