1 |
MENENDEZ A , WANCZYK H , WALKER J , et al. Obesity and adipose tissue dysfunction: from pediatrics to adults[J]. Genes (Basel), 2022, 13 (10): 1866.
doi: 10.3390/genes13101866
|
2 |
KAWAI T , AUTIERI M V , SCALIA R . Adipose tissue inflammation and metabolic dysfunction in obesity[J]. Am J Physiol Cell Physiol, 2021, 320 (3): C375- C391.
doi: 10.1152/ajpcell.00379.2020
|
3 |
IBRAHIM M M . Subcutaneous and visceral adipose tissue: structural and functional differences[J]. Obes Rev, 2010, 11 (1): 11- 18.
doi: 10.1111/j.1467-789X.2009.00623.x
|
4 |
HEINONEN S , JOKINEN R , RISSANEN A , et al. White adipose tissue mitochondrial metabolism in health and in obesity[J]. Obes Rev, 2020, 21 (2): e12958.
doi: 10.1111/obr.12958
|
5 |
PIETROCOLA F , GALLUZZI L , BRAVO-SAN PEDRO J M , et al. Acetyl coenzyme A: a central metabolite and second messenger[J]. Cell Metab, 2015, 21 (6): 805- 821.
doi: 10.1016/j.cmet.2015.05.014
|
6 |
王义平, 雷群英. 赖氨酸乙酰化调控细胞代谢的机制[J]. 生命科学, 2018, 30 (4): 447- 454.
|
|
WANG Y P , LEI Q Y . Regulation of cell metabolism by lysine acetylation[J]. Chinese Bulletin of Life Sciences, 2018, 30 (4): 447- 454.
|
7 |
SHVEDUNOVA M , AKHTAR A . Modulation of cellular processes by histone and non-histone protein acetylation[J]. Nat Rev Mol Cell Biol, 2022, 23 (5): 329- 349.
doi: 10.1038/s41580-021-00441-y
|
8 |
VERDIN E , OTT M . 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond[J]. Nat Rev Mol Cell Biol, 2015, 16 (4): 258- 264.
doi: 10.1038/nrm3931
|
9 |
ZHANG K Y , TAO C , XU J P , et al. CD8+ T cells involved in metabolic inflammation in visceral adipose tissue and liver of transgenic pigs[J]. Front Immunol, 2021, 12, 690069.
doi: 10.3389/fimmu.2021.690069
|
10 |
夏博策, 张凯艺, 苗佳坤, 等. 猪CPB2基因可变剪接体的克隆及生物信息学研究[J]. 畜牧兽医学报, 2022, 53 (10): 3377- 3390.
doi: 10.11843/j.issn.0366-6964.2022.10.011
|
|
XIA B C , ZHANG K Y , MIAO J K , et al. Cloning and bioinformatics study of alternative splicing isoforms of pig CPB2 gene[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (10): 3377- 3390.
doi: 10.11843/j.issn.0366-6964.2022.10.011
|
11 |
ZHU X F , XIE X , DAS H , et al. Non-coding 7S RNA inhibits transcription via mitochondrial RNA polymerase dimerization[J]. Cell, 2022, 185 (13): 2309- 2323.
doi: 10.1016/j.cell.2022.05.006
|
12 |
HE W J , LI Q G , LI X X . Acetyl-CoA regulates lipid metabolism and histone acetylation modification in cancer[J]. Biochim Biophys Acta-Rev Cancer, 2023, 1878 (1): 188837.
doi: 10.1016/j.bbcan.2022.188837
|
13 |
PENG H Q , ZHANG K Y , MIAO J K , et al. SnRNA-Seq of pancreas revealed the dysfunction of endocrine and exocrine cells in transgenic pigs with prediabetes[J]. Int J Mol Sci, 2023, 24 (9): 7701.
doi: 10.3390/ijms24097701
|
14 |
YANG Q , XU H C , ZHANG H L , et al. Serum triglyceride glucose index is a valuable predictor for visceral obesity in patients with type 2 diabetes: a cross-sectional study[J]. Cardiovasc Diabetol, 2023, 22 (1): 98.
doi: 10.1186/s12933-023-01834-3
|
15 |
SON D H , LEE H S , LEE Y J , et al. Comparison of triglyceride-glucose index and HOMA-IR for predicting prevalence and incidence of metabolic syndrome[J]. Nutr Metab Cardiovasc Dis, 2022, 32 (3): 596- 604.
doi: 10.1016/j.numecd.2021.11.017
|
16 |
WANG L , CONG H L , ZHANG J X , et al. Triglyceride-glucose index predicts adverse cardiovascular events in patients with diabetes and acute coronary syndrome[J]. Cardiovasc Diabetol, 2020, 19 (1): 80.
doi: 10.1186/s12933-020-01054-z
|
17 |
RAJA A A , DANDARE A , KHAN M J , et al. Free fatty acid overload targets mitochondria: gene expression analysis of palmitic acid-treated endothelial cells[J]. Genes (Basel), 2022, 13 (10): 1704.
doi: 10.3390/genes13101704
|
18 |
VILARIÑO-GARCÍA T , POLONIO-GONZÁLEZ M L , PÉREZ-PÉREZ A , et al. Role of leptin in obesity, cardiovascular disease, and type 2 diabetes[J]. Int J Mol Sci, 2024, 25 (4): 2338.
doi: 10.3390/ijms25042338
|
19 |
KIM J , OH C M , KIM H . The interplay of adipokines and pancreatic beta cells in metabolic regulation and diabetes[J]. Biomedicines, 2023, 11 (9): 2589.
doi: 10.3390/biomedicines11092589
|
20 |
WANG Z V , SCHERER P E . Adiponectin, the past two decades[J]. J Mol Cell Biol, 2016, 8 (2): 93- 100.
doi: 10.1093/jmcb/mjw011
|
21 |
HEINONEN S , BUZKOVA J , MUNIANDY M , et al. Impaired mitochondrial biogenesis in adipose tissue in acquired obesity[J]. Diabetes, 2015, 64 (9): 3135- 3145.
doi: 10.2337/db14-1937
|
22 |
NOLFI-DONEGAN D , BRAGANZA A , SHIVA S . Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and methods of measurement[J]. Redox Biol, 2020, 37, 101674.
doi: 10.1016/j.redox.2020.101674
|
23 |
LI Z P , GURUNG M , RODRIGUES R R , et al. Microbiota and adipocyte mitochondrial damage in type 2 diabetes are linked by Mmp12+ macrophages[J]. J Exp Med, 2022, 219 (7): e20220017.
doi: 10.1084/jem.20220017
|
24 |
HEINONEN S , MUNIANDY M , BUZKOVA J , et al. Mitochondria-related transcriptional signature is downregulated in adipocytes in obesity: a study of young healthy MZ twins[J]. Diabetologia, 2017, 60 (1): 169- 181.
doi: 10.1007/s00125-016-4121-2
|
25 |
VAN DER KOLK B W , SAARI S , LOVRIC A , et al. Molecular pathways behind acquired obesity: adipose tissue and skeletal muscle multiomics in monozygotic twin pairs discordant for BMI[J]. Cell Rep Med, 2021, 2 (4): 100226.
doi: 10.1016/j.xcrm.2021.100226
|
26 |
SABARATNAM R , HANSEN D R , SVENNINGSEN P . White adipose tissue mitochondrial bioenergetics in metabolic diseases[J]. Rev Endocr Metab Disord, 2023, 24 (6): 1121- 1133.
doi: 10.1007/s11154-023-09827-z
|
27 |
IZZO L T , TREFELY S , DEMETRIADOU C , et al. Acetylcarnitine shuttling links mitochondrial metabolism to histone acetylation and lipogenesis[J]. Sci Adv, 2023, 9 (18): eadf0115.
doi: 10.1126/sciadv.adf0115
|
28 |
SHEN Y , WEI W , ZHOU D X . Histone acetylation enzymes coordinate metabolism and gene expression[J]. Trends Plant Sci, 2015, 20 (10): 614- 621.
doi: 10.1016/j.tplants.2015.07.005
|
29 |
LU J Q , TARNOPOLSKY M A . Mitochondrial neuropathy and neurogenic features in mitochondrial myopathy[J]. Mitochondrion, 2021, 56, 52- 61.
doi: 10.1016/j.mito.2020.11.005
|
30 |
MENZIES K J , ZHANG H B , KATSYUBA E , et al. Protein acetylation in metabolism-metabolites and cofactors[J]. Nat Rev Endocrinol, 2016, 12 (1): 43- 60.
doi: 10.1038/nrendo.2015.181
|
31 |
MUNIANDY M , HEINONEN S , YKI-JÄRVINEN H , et al. Gene expression profile of subcutaneous adipose tissue in BMI-discordant monozygotic twin pairs unravels molecular and clinical changes associated with sub-types of obesity[J]. Int J Obes (Lond), 2017, 41 (8): 1176- 1184.
doi: 10.1038/ijo.2017.95
|
32 |
WANG J L , LIN X F , ZHAO N N , et al. Effects of mitochondrial dynamics in the pathophysiology of obesity[J]. Front Biosci (Landmark Ed), 2022, 27 (3): 107.
doi: 10.31083/j.fbl2703107
|
33 |
MENEUX L , FERET N , PERNOT S , et al. Inherited mitochondrial dysfunction triggered by OPA1 mutation impacts the sensory innervation fibre identity, functionality and regenerative potential in the cornea[J]. Sci Rep, 2024, 14 (1): 18794.
doi: 10.1038/s41598-024-68994-4
|
34 |
VON DER MALSBURG A , SAPP G M , ZUCCARO K E , et al. Structural mechanism of mitochondrial membrane remodelling by human OPA1[J]. Nature, 2023, 620 (7976): 1101- 1108.
doi: 10.1038/s41586-023-06441-6
|
35 |
NYENHUIS S B , WU X , STRUB M P , et al. OPA1 helical structures give perspective to mitochondrial dysfunction[J]. Nature, 2023, 620 (7976): 1109- 1116.
doi: 10.1038/s41586-023-06462-1
|