

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (11): 5464-5474.doi: 10.11843/j.issn.0366-6964.2025.11.010
张留哲1,2(
), 赵佳男1,2, 张丽琼1,2, 张裕荣2, 唐露2, 李俊良2,*(
), 郭慧慧1,*(
)
收稿日期:2025-03-20
出版日期:2025-11-23
发布日期:2025-11-27
通讯作者:
李俊良,郭慧慧
E-mail:1035282238@qq.com;1018761709@qq.com;aLaddin111@163.com
作者简介:张留哲(1998-),男,山东菏泽人,硕士,主要从事动物基因编辑研究,E-mail: 1035282238@qq.com
基金资助:
ZHANG Liuzhe1,2(
), ZHAO Jianan1,2, ZHANG Liqiong1,2, ZHANG Yurong2, TANG Lu2, LI Junliang2,*(
), GUO Huihui1,*(
)
Received:2025-03-20
Online:2025-11-23
Published:2025-11-27
Contact:
LI Junliang, GUO Huihui
E-mail:1035282238@qq.com;1018761709@qq.com;aLaddin111@163.com
摘要:
旨在利用Cas12iHIFI基因编辑技术获得敲除XIST基因华西牛成纤维细胞系。本研究使用健康成年种公牛22284#的耳缘成纤维细胞作为供体,针对牛XIST基因设计多组sgRNA,验证效率后选取6对高效的sgRNA组成3个方案进行试验,每个方案收集15份九十六孔板细胞,通过电转染方式介导基因编辑,最后使用突变细胞验证出使用的sgRNA没有出现脱靶情况。结果表明,成功构建了XIST敲除的华西牛成纤维细胞模型。试验共获得5株纯合突变细胞系及1株杂合细胞系,验证了Cas12i在高GC含量重复序列中的高效编辑能力。该研究为解析牛XCI机制及提高克隆胚胎发育效率提供了重要的试验材料和理论依据。
中图分类号:
张留哲, 赵佳男, 张丽琼, 张裕荣, 唐露, 李俊良, 郭慧慧. 基于CRISPR-Cas12i技术构建XIST基因敲除的华西牛成纤维细胞系[J]. 畜牧兽医学报, 2025, 56(11): 5464-5474.
ZHANG Liuzhe, ZHAO Jianan, ZHANG Liqiong, ZHANG Yurong, TANG Lu, LI Junliang, GUO Huihui. Construction of XIST Gene Knockout Fibroblast Cell Line from Huaxi Cattle Using CRISPR-Cas12i Technology[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(11): 5464-5474.
表 1
针对XIST基因靶位点设计sgRNA"
| sgRNA名称 sgRNA name | sgRNA序列 sgRNA sequence | |
| 1-1 | acggTTAAAGCGCTGCACTTTGCT | aaaaAGCAAAGTGCAGCGCTTTAA |
| 1-2 | acggACAGACACGAACCCATTGAA | aaaaTTCAATGGGTTCGTGTCTGT |
| 1-3 | acggAAGTCATGGCTCCTGGACTA | aaaaTAGTCCAGGAGCCATGACTT |
| 1-4 | acggCTGGAACATTTTCCAGACCC | aaaaGGGTCTGGAAAATGTTCCAG |
| 1-5 | acggCCATACTAGTCACTTAAGGC | aaaaGCCTTAAGTGACTAGTATGG |
| 1-6 | acggCTAGTGTTCGATTTCAGCCT | aaaaAGGCTGAAATCGAACACTAG |
| 1-7 | acggCTCAAGAGGAACACCTACCC | aaaaGGGTAGGTGTTCCTCTTGAG |
| 1-8 | acggATGGGTTTTCATATTTGGGT | aaaaACCCAAATATGAAAACCCAT |
| 1-9 | acggATCTGATACCAATGCCCTTT | aaaaAAAGGGCATTGGTATCAGAT |
| 1-10 | acggTCAGGCAGGGGCTCTCATAT | aaaaATATGAGAGCCCCTGCCTGA |
| 2-1 | acggATTAAAATGGGCAGTGAGAG | aaaaCTCTCACTGCCCATTTTAAT |
| 2-2 | acggTATAGAACTTGGAGATCGTG | aaaaCACGATCTCCAAGTTCTATA |
| 2-3 | acggCTCACAGCTTGTTTCCCCCA | aaaaTGGGGGAAACAAGCTGTGAG |
| 2-4 | acggCCTCCAGTCAGTCAGACAAA | aaaaTTTGTCTGACTGACTGGAGG |
| 2-5 | acggAGAAACAAGAAGGCTCAGGA | aaaaTCCTGAGCCTTCTTGTTTCT |
| 2-6 | acggGTGTAATCCTATGAGCATTA | aaaaTAATGCTCATAGGATTACAC |
| 2-7 | acggGTGTGGGATGATGTATAGTG | aaaaCACTATACATCATCCCACA |
| 2-8 | acggACAGTTGGTTTCACTAAAGC | aaaaGCTTTAGTGAAACCAACTGT |
| 2-9 | acggGTTTCACTAAAGCAACTCAA | aaaaTTGAGTTGCTTTAGTGAAAC |
| 2-10 | acggCTTTAGTGAAACCAACTGTT | aaaaAACAGTTGGTTTCACTAAAG |
| X-3-1 | acggATGGGGGAAAAATTGTGGTA | aaaaTACCACAATTTTTCCCCCAT |
| X-3-2 | acggCAAAGATGGACATGTTTAAA | aaaaTTTAAACATGTCCATCTTTG |
| X-3-3 | acggCTAGAGTAATGGCCAGTGTA | aaaaTACACTGGCCATTACTCTAG |
| X-3-4 | acggCATTACAGGTTTATTTCCTC | aaaaGAGGAAATAAACCTGTAATG |
| X-3-5 | acggTGTGACTTCCATTACAGGTT | aaaaAACCTGTAATGGAAGTCACA |
| C-3-1 | acggAGGCACATGAGATAATATGA | aaaaTCATATTATCTCATGTGCCT |
| C-3-2 | acggCATTAATCTCACATCTCATC | aaaaGATGAGATGTGAGATTAATG |
| C-3-3 | acggGCTTCACAAATAGACAAGTC | aaaaGACTTGTCTATTTGTGAAGC |
| C-3-4 | acggCATAAGTTCAACTGACACAA | aaaaTTGTGTCAGTTGAACTTATG |
| C-3-5 | acggCCAAAAGGTTGTTCACGTGA | aaaaTCACGTGAACAACCTTTTGG |
表 3
单克隆培养及鉴定"
| 华西牛XIST敲除 XIST knockout in Huaxi cattle | 96孔板数量 Number of 96-well plates | 48孔板数量 Number of 48-well plates | 24孔板数量 Number of 24-well plates | 筛选单克隆数 Monoclonal numbers | 验证成功 Successful authentication |
| 284方案一284 option one | 15 | 16 | 16 | 320 | 5 |
| 284方案二284 option two | 15 | 7 | 6 | 165 | 1 |
| 284方案三284 option three | 15 | 6 | 6 | 73 | 0 |
| 1 |
LYON M F . Gene action in the X-chromosome of the mouse (Mus musculus L.)[J]. Nature, 1961, 190 (4773): 372- 373.
doi: 10.1038/190372a0 |
| 2 |
BROWN S D . XIST and the mapping of the X chromosome inactivation centre[J]. Bioessays, 1991, 13 (11): 607- 612.
doi: 10.1002/bies.950131112 |
| 3 |
WUTZ A , GRIBNAU J . X inactivation Xplained[J]. Curr Opin Genet Dev, 2007, 17 (5): 387- 393.
doi: 10.1016/j.gde.2007.08.001 |
| 4 |
LEE J T , BARTOLOMEI M S . X-inactivation, imprinting, and long noncoding RNAs in health and disease[J]. Cell, 2013, 152 (6): 1308- 1323.
doi: 10.1016/j.cell.2013.02.016 |
| 5 |
TONGE P D , NAGY A . Extinction of Xist improves cloning[J]. Cell Stem Cell, 2010, 7 (5): 550- 552.
doi: 10.1016/j.stem.2010.10.003 |
| 6 |
WANG X , QU J , LI J , et al. Epigenetic reprogramming during somatic cell nuclear transfer: recent progress and future directions[J]. Front Genet, 2020, 11, 205.
doi: 10.3389/fgene.2020.00205 |
| 7 |
GAO R , WANG C , GAO Y , et al. Inhibition of aberrant DNA re-methylation improves post-implantation development of somatic cell nuclear transfer embryos[J]. Cell Stem Cell, 2018, 23 (3): 426- 435.
doi: 10.1016/j.stem.2018.07.017 |
| 8 |
LONG C R , WESTHUSIN M E , GOLDING M C . Reshaping the transcriptional frontier: epigenetics and somatic cell nuclear transfer[J]. Mol Reprod Dev, 2014, 81 (2): 183- 193.
doi: 10.1002/mrd.22271 |
| 9 |
MATOBA S , LIU Y , LU F , et al. Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation[J]. Cell, 2014, 159 (4): 884- 895.
doi: 10.1016/j.cell.2014.09.055 |
| 10 |
TYUMENTSEVA M , TYUMENTSEV A , AKIMKIN V . CRISPR/Cas9 landscape: Current state and future perspectives[J]. Int J Mol Sci, 2023, 24 (22): 16075.
doi: 10.3390/ijms242216075 |
| 11 |
MCGAW C , GARRITY A J , MUNOZ G Z , et al. Engineered Cas12i2 is a versatile high-efficiency platform for therapeutic genome editing[J]. Nat Commun, 2022, 13 (1): 2833.
doi: 10.1038/s41467-022-30465-7 |
| 12 | RANANAWARE S R , MEISTER K S , SHOEMAKER G M , et al. PAM-free diagnostics with diverse type Ⅴ CRISPR-Cas systems[J]. medRxiv[Preprint], 2024, 2024.05.02.24306194. |
| 13 |
BAI R , GUO W , ZHANG T , et al. Single-cut gene therapy in a one-step generated rhesus monkey model of Duchenne muscular dystrophy[J]. Cell Rep Med, 2025, 6 (4): 102037.
doi: 10.1016/j.xcrm.2025.102037 |
| 14 | CHEN Y , HU Y , WANG X , et al. Synergistic engineering of CRISPR-Cas nucleases enables robust mammalian genome editing[J]. Innovation (Camb), 2022, 3 (4): 100264. |
| 15 |
SWIECH L , HEIDENREICH M , BANERJEE A , et al. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9[J]. Nat Biotechnol, 2015, 33 (1): 102- 106.
doi: 10.1038/nbt.3055 |
| 16 |
GUO C , MA X , GAO F , et al. Off-target effects in CRISPR/Cas9 gene editing[J]. Front Bioeng Biotechnol, 2023, 11, 1143157.
doi: 10.3389/fbioe.2023.1143157 |
| 17 |
LIAO H , WU J , VANDUSEN N J , et al. CRISPR-Cas9-mediated homology-directed repair for precise gene editing[J]. Mol Ther Nucleic Acids, 2024, 35 (4): 102344.
doi: 10.1016/j.omtn.2024.102344 |
| 18 |
YAN W X , HUNNEWELL P , ALFONSE L E , et al. Functionally diverse type Ⅴ CRISPR-Cas systems[J]. Science, 2019, 363 (6422): 88- 91.
doi: 10.1126/science.aav7271 |
| 19 |
REN J , HAI T , CHEN Y , et al. Improve meat production and virus resistance by simultaneously editing multiple genes in livestock using Cas12i[J]. Sci China Life Sci, 2024, 67 (3): 555- 564.
doi: 10.1007/s11427-023-2407-0 |
| 20 |
LEE K , UH K , FARRELL K . Current progress of genome editing in livestock[J]. Theriogenology, 2020, 150, 229- 235.
doi: 10.1016/j.theriogenology.2020.01.036 |
| 21 |
BOGLIOTTI Y S , WU J , VILARINO M , et al. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts[J]. Proc Natl Acad Sci U S A, 2018, 115 (9): 2090- 2095.
doi: 10.1073/pnas.1716161115 |
| 22 |
KIM D , KIM J , HUR J K , et al. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells[J]. Nat Biotechnol, 2016, 34 (8): 863- 868.
doi: 10.1038/nbt.3609 |
| 23 |
DOENCH J G , FUSI N , SULLENDER M , et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9[J]. Nat Biotechnol, 2016, 34 (2): 184- 191.
doi: 10.1038/nbt.3437 |
| 24 |
ZETSCHE B , GOOTENBERG J S , ABUDAYYEH O O , et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163 (3): 759- 771.
doi: 10.1016/j.cell.2015.09.038 |
| 25 | DUAN Z , LIANG Y , SUN J , et al. An engineered Cas12i nuclease that is an efficient genome editing tool in animals and plants[J]. Innovation (Camb), 2024, 5 (2): 100564. |
| 26 |
HURET C , FERRAYÉ L , DAVID A , et al. Altered X-chromosome inactivation predisposes to autoimmunity[J]. Sci Adv, 2024, 10 (18): eadn6537.
doi: 10.1126/sciadv.adn6537 |
| 27 | HAUTH A , PANTEN J , KNEUSS E , et al. Escape from X inactivation is directly modulated by levels of Xist non-coding RNA[J]. bioRxiv[Preprint], 2024, 2024.02.22.581559. |
| 28 |
INOUE K , KOHDA T , SUGIMOTO M , et al. Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer[J]. Science, 2010, 330 (6003): 496- 499.
doi: 10.1126/science.1194174 |
| 29 |
DONG Y , WU X , PENG X , et al. Knockdown of YY1 Inhibits XIST Expression and Enhances Cloned Pig Embryo Development[J]. Int J Mol Sci, 2022, 23 (23): 14572.
doi: 10.3390/ijms232314572 |
| 30 |
AKSIT M A , YU B , ROELEN B A J , et al. Silencing XIST on the future active X: Searching human and bovine preimplantation embryos for the repressor[J]. Eur J Hum Genet, 2024, 32 (4): 399- 406.
doi: 10.1038/s41431-022-01115-9 |
| 31 |
YU B , VAN TOL H T A , STOUT T A E , et al. Initiation of X chromosome inactivation during bovine embryo development[J]. Cells, 2020, 9 (4): 1016.
doi: 10.3390/cells9041016 |
| 32 |
JALI I , VANAMAMALAI V K , GARG P , et al. Identification and differential expression of long non-coding RNAs and their association with XIST gene during early developmental stages of Bos taurus[J]. Int J Biol Macromol, 2023, 229, 896- 908.
doi: 10.1016/j.ijbiomac.2022.12.221 |
| 33 |
COLAGNURI D , SUNWOO H , WANG D , et al. Xist repeats A and B account for two distinct phases of X inactivation establishment[J]. Dev Cell, 2020, 54 (1): 21- 32.
doi: 10.1016/j.devcel.2020.05.021 |
| 34 |
LIANG M , ZHANG L , GONG H , et al. Deletion of Xist repeat B disrupts cell cycle and asymmetric cell division through Usp9x hyperactivation in mice[J]. Nucleic Acids Res, 2025, 53 (5): gkaf142.
doi: 10.1093/nar/gkaf142 |
| 35 |
SHI Y , WANG H , CHAI M , et al. The analysis of X chromosome activity of porcine embryonic stem cells: Study based on parthenogenetic embryonic stem cells with LCDM medium[J]. Theriogenology, 2025, 244, 117479.
doi: 10.1016/j.theriogenology.2025.117479 |
| 36 | LI Z , SHI J , LIU D , et al. CRISPR/Cas9-mediated biallelic knockout of IGF1R through microinjection in porcine zygotes[J]. Sci Rep, 2018, 8 (1): 1- 10. |
| 37 | 邹惠影. 猪XIST表达及X染色体失活规律的研究[D]. 北京: 中国农业大学, 2016. |
| ZOU H Y. Study on the expression of porcine XIST and the pattern of X chromosome inactivation[D]. Beijing: China Agricultural University, 2016. (in Chinese) | |
| 38 | 余大为. 猪诱导多能干细胞及其核移植胚胎的异常表观重编程研究[D]. 北京: 中国农业大学, 2015. |
| YU D W. Aberrant epigenetic reprogramming in porcine induced pluripotent stem cells and their nuclear transfer embryos[D]. Beijing: China Agricultural University, 2015. (in Chinese) |
| [1] | 孙品之, 屈盈盈, 张沁, 杨丽雯, 李彦歌, 张怡清清, 张雨, 路浩. p5cr基因在金龟子绿僵菌合成苦马豆素中相关性分析[J]. 畜牧兽医学报, 2025, 56(9): 4718-4729. |
| [2] | 迟顺顺, 吴丹, 王楠, 王婉洁, 聂雨欣, 牟玉莲, 刘志国, 朱振东, 李奎. 基于RPA-CRISPR/Cas12a的MSTN基因编辑猪检测方法的建立及应用[J]. 畜牧兽医学报, 2025, 56(8): 3734-3748. |
| [3] | 张帆, 曾威, 周傲. 畜禽基因编辑抗病育种研究进展[J]. 畜牧兽医学报, 2025, 56(7): 3047-3056. |
| [4] | 李晓晗, 李桂萍, 霍彩云, 张启龙, 孙英健, 孙惠玲. Ⅱ类CRISPR/Cas系统及其在细菌合成生物学中的应用[J]. 畜牧兽医学报, 2025, 56(4): 1608-1620. |
| [5] | 解雅茹, 金昊延, 孔辰, 蔡蓓, 张令锴. CRISPR/Cas9系统在家畜生殖细胞中的研究进展[J]. 畜牧兽医学报, 2025, 56(2): 479-491. |
| [6] | 岳怡冰, 李俊良, 包斌武, 高晨, 陈燕, 朱波, 张路培, 王泽昭, 高会江, 高雪, 黄永震, 李俊雅. OMEGA基因编辑系统:结构、功能及其优化方案的研究进展[J]. 畜牧兽医学报, 2025, 56(11): 5335-5351. |
| [7] | 包斌武, 邹惠影, 李俊良, 高晨, 高会江, 杜振伟, 张博玉, 李俊雅, 高雪. 基因编辑技术的研究进展[J]. 畜牧兽医学报, 2025, 56(1): 1-14. |
| [8] | 刘雯雯, 董发明, 毕延震. 多基因编辑技术的发展及其在畜牧种质创新中的应用[J]. 畜牧兽医学报, 2024, 55(8): 3267-3275. |
| [9] | 梁瑞英, 索静霞, 梁琳, 刘贤勇, 丁家波, 索勋, 汤新明. 艾美耳球虫的遗传操作:平台建立、应用与展望[J]. 畜牧兽医学报, 2024, 55(8): 3362-3373. |
| [10] | 张多, 滕蔓, 张卓, 刘金玲, 郑鹿平, 各思雨, 韩放, 罗琴, 柴书军, 赵东, 余祖华, 罗俊. 一株马立克病病毒特超强变异株meq基因编辑缺失候选疫苗毒株的构建与鉴定[J]. 畜牧兽医学报, 2024, 55(12): 5672-5683. |
| [11] | 张学富, 陈运通, 范文瑞, 张子博, 于蒙蒙, 王素艳, 祁小乐, 李留安, 高玉龙. 鸡chNHE1精准基因编辑细胞系的构建及其抗ALV-J感染的研究[J]. 畜牧兽医学报, 2024, 55(11): 5238-5246. |
| [12] | 丁修虎, 林志平, 赵芳, 陈坤琳, 仲跻峰, 张燕, 高运东, 李惠侠, 王慧利, 张建丽, 丁强. 利用CRISPR/Cas9技术制备BLG基因敲除牛乳腺上皮细胞系[J]. 畜牧兽医学报, 2024, 55(10): 4475-4488. |
| [13] | 张晨俭, 李隐侠, 丁强, 刘伟佳, 王慧利, 何南, 吴家顺, 曹少先. CRISPR/Cas9技术高效制备山羊SOCS2基因编辑胚胎[J]. 畜牧兽医学报, 2024, 55(1): 129-141. |
| [14] | 刘铃, 王丹丹, 崔凯, 马月辉, 蒋琳. 猪繁殖与呼吸综合征抗病育种研究进展[J]. 畜牧兽医学报, 2023, 54(2): 434-442. |
| [15] | 张硕, 周雨潇, 吴海波, 索伦. 长效CRISPR/Cas9基因编辑结局的动态追踪研究[J]. 畜牧兽医学报, 2023, 54(10): 4196-4208. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||