畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (2): 479-491.doi: 10.11843/j.issn.0366-6964.2025.02.001
收稿日期:
2024-08-16
出版日期:
2025-02-23
发布日期:
2025-02-26
通讯作者:
张令锴
E-mail:xieyaru0724@163.com;zhanglklab2023@163.com
作者简介:
解雅茹(2001-),女,山西运城人,硕士生,主要从事动物遗传育种与繁殖研究,E-mail: xieyaru0724@163.com
基金资助:
XIE Yaru(), JIN Haoyan, KONG Chen, CAI Bei, ZHANG Lingkai*(
)
Received:
2024-08-16
Online:
2025-02-23
Published:
2025-02-26
Contact:
ZHANG Lingkai
E-mail:xieyaru0724@163.com;zhanglklab2023@163.com
摘要:
生殖细胞是生命体遗传物质传递的主要载体,在家畜育种过程中发挥重要作用。人们对畜产品需求的不断增加促进了精确育种技术的发展。基因编辑技术显著提升基因强化和疾病治疗成效,这一进展凸显了将该技术应用于家畜生殖细胞研究的重要性。与其他基因编辑技术相比,CRISPR/Cas9系统和CRISPR/Cas12系统的研究较为深入。CRISPR/Cas技术已在多项研究中取得突破性进展,被视为一种极有潜力的育种改良手段。本文主要针对两种CRISPR/Cas系统及CRISPR/Cas9系统在家畜生殖细胞中的应用进行综述,对家畜生殖细胞形成过程进行简要概括,阐述CRISPR/Cas9系统和CRISPR/Cas12系统的原理、构成和衍生技术,介绍CRISPR/Cas9系统在家畜生殖细胞中的应用,对基因编辑技术广泛应用于家畜生殖细胞进行展望,旨在为未来畜牧基因编辑领域的研究提供参考。
中图分类号:
解雅茹, 金昊延, 孔辰, 蔡蓓, 张令锴. CRISPR/Cas9系统在家畜生殖细胞中的研究进展[J]. 畜牧兽医学报, 2025, 56(2): 479-491.
XIE Yaru, JIN Haoyan, KONG Chen, CAI Bei, ZHANG Lingkai. Research Progress of CRISPR/Cas9 System in Livestock Germ Cells[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 479-491.
表 2
CRISPR/Cas9系统和CRISPR/Cas12a系统对比表"
项目Item | CRISPR/Cas9 | CRISPR/Cas12a | CRISPR/Cas12b | CRISPR/Cas12f |
切割条件 Cutting condition | Cas蛋白、crRNA、tracrRNA、PAM序列 | Cas蛋白、crRNA、PAM序列 | Cas蛋白、crRNA、tracrRNA、PAM序列 | Cas蛋白、crRNA、tracrRNA、PAM序列 |
结构域 Structural domain | Ruv-C、HNH结构域 | Ruv-C、NUC等结构域 | Ruv-C结构域 | Ruv-C结构域 |
多位点编辑效率 Multi-site editing efficiency | 低 | 最高 | 较高 | 高 |
切割后末端类型 End type after cutting | 平性末端 | 黏性末端 | 远端交错末端 | 黏性末端 |
编辑替换效率 Edit replacement efficiency | 低 | 最高 | 较高 | 高 |
RNase Ⅲ | 需要 | 不需要 | 不需要 | 不需要 |
介导靶向DNA Mediated targeting DNA | crRNA和tracrRNA共同介导的核酸酶 | 单一crRNA介导的核酸内切酶 | crRNA和tracrRNA共同介导的核酸酶 | crRNA和tracrRNA共同介导的核酸酶 |
1 |
WANG X L , NIU Y Y , ZHOU J K , et al. Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detectable off-target effects in sheep[J]. Sci Rep, 2016, 6 (1): 32271.
doi: 10.1038/srep32271 |
2 |
PAN J S , LIN Z S , WEN J C , et al. Application of the modified cytosine base-editing in the cultured cells of bama minipig[J]. Biotechnol Lett, 2021, 43 (9): 1699- 1714.
doi: 10.1007/s10529-021-03159-1 |
3 |
ZHANG J F , KHAZALWA E M , ABKALLO H M , et al. The advancements, challenges, and future implications of the CRISPR/Cas9 system in swine research[J]. J Genet Genom, 2021, 48 (5): 347- 360.
doi: 10.1016/j.jgg.2021.03.015 |
4 | 魏楠, 谷峰. CRISPR/Cas9技术在猪常见病毒性疾病防控中的应用[J]. 中国兽医学报, 2021, 41 (2): 366- 372. |
WEI N , GU F . Application of CRISPR/Cas9 technology in viral diseases of pigs[J]. Chinese Journal of Veterinary Science, 2021, 41 (2): 366- 372. | |
5 | ICYUZ M , FITCH M , ZHANG F , et al. Physiological and metabolic features of mice with CRISPR/Cas9-mediated loss-of-function in growth hormone-releasing hormone[J]. Aging (Albany NY), 2020, 12 (10): 9761- 9780. |
6 |
VAN EENENNAAM A L , DE FIGUEIREDO SILVA F , TROTT J F , et al. Genetic engineering of livestock: the opportunity cost of regulatory delay[J]. Annu Rev Anim Biosci, 2021, 9, 453- 478.
doi: 10.1146/annurev-animal-061220-023052 |
7 | GOLDSMITH T, BONDAREVA A, WEBSTER D, et al. Targeted gene editing in porcine germ cells[M]//VERMA P J, SUMER H, LIU J. Applications of Genome Modulation and Editing. New York: Humana, 2022: 245-258. |
8 |
PENNISI E . Gene editing produces single-sex litters in mice[J]. Science, 2021, 374 (6573): 1307- 1308.
doi: 10.1126/science.acx9785 |
9 | WANG S T , QU Z X , HUANG Q Y , et al. Application of gene editing technology in resistance breeding of livestock[J]. Life (Basel), 2022, 12 (7): 1070. |
10 |
MAYNARD L H , HUMBERT O , PETERSON C W , et al. Genome editing in large animal models[J]. Mol Ther, 2021, 29 (11): 3140- 3152.
doi: 10.1016/j.ymthe.2021.09.026 |
11 | 赖锦盛, 周英思, 李英男, 等. CRISPR-Cas12j酶和系统: 中国, 111770992A[P]. 2020-10-13. |
LAI J S, ZHOU Y S, LI Y N, et al. CRISPR-Cas12j enzyme and system: CN, 111770992A[P]. 2020-10-13. (in Chinese) | |
12 |
ZHANG H , LI Z , XIAO R J , et al. Mechanisms for target recognition and cleavage by the Cas12i RNA-guided endonuclease[J]. Nat Struct Mol Biol, 2020, 27 (11): 1069- 1076.
doi: 10.1038/s41594-020-0499-0 |
13 |
PICKAR-OLIVER A , GERSBACH C A . The next generation of CRISPR-Cas technologies and applications[J]. Nat Rev Mol Cell Biol, 2019, 20 (8): 490- 507.
doi: 10.1038/s41580-019-0131-5 |
14 |
XIANG G H , LI Y Q , SUN J , et al. Evolutionary mining and functional characterization of TnpB nucleases identify efficient miniature genome editors[J]. Nat Biotechnol, 2024, 42 (5): 745- 757.
doi: 10.1038/s41587-023-01857-x |
15 |
MARSTON A L , AMON A . Meiosis: cell-cycle controls shuffle and deal[J]. Nat Rev Mol Cell Biol, 2004, 5 (12): 983- 997.
doi: 10.1038/nrm1526 |
16 |
BAUDAT F , IMAI Y , DE MASSY B . Meiotic recombination in mammals: localization and regulation[J]. Nat Rev Genet, 2013, 14 (11): 794- 806.
doi: 10.1038/nrg3573 |
17 | 万仕成, 张梦菲, 陈文博, 等. BLOC1S1促进山羊精原干细胞增殖[J]. 生物工程学报, 2023, 39 (12): 4901- 4914. |
WAN S C , ZHANG M F , CHEN W B , et al. BLOC1S1 promotes proliferation of goat spermatogonial stem cells[J]. Chinese Journal of Biotechnology, 2023, 39 (12): 4901- 4914. | |
18 |
YANG D H , ZHANG M F , CHEN W B , et al. UCHL1 maintains microenvironmental homeostasis in goat germline stem cells[J]. FASEB J, 2023, 37 (12): e23306.
doi: 10.1096/fj.202301674RR |
19 | 谈峰, 陈高贵, 陈亚茹, 等. Dkk2基因对雌性小鼠卵泡发育过程的功能探究[J]. 中国畜牧杂志, 2024, 60 (11): 144- 153. |
TAN F , CHEN G G , CHEN Y R , et al. Functional investigation of Dkk2 gene on follicular developmentin female mice[J]. Chinese Journal of Animal Science, 2024, 60 (11): 144- 153. | |
20 | YU H B , ZHANG Y , ZHANG Y D , et al. Effects of exogenous regulation of PPARγ on ovine oocyte maturation and embryonic development in vitro[J]. Vet Sci, 2024, 11 (9): 397. |
21 | 陈莹. CSTB和NPY基因在绵羊卵母细胞及卵丘细胞中的功能研究[D]. 石河子: 石河子大学, 2023. |
CHEN Y. Study on the function of CSTB and NPY genes in ovine oocytes and cumulus cells[D]. Shihezi: Shihezi University, 2023. (in Chinese) | |
22 |
ISHINO Y , SHINAGAWA H , MAKINO K , et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. J Bacteriol, 1987, 169 (12): 5429- 5433.
doi: 10.1128/jb.169.12.5429-5433.1987 |
23 |
JANSEN R , VAN EMBDEN J D A , GAASTRA W , et al. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Mol Microbiol, 2002, 43 (6): 1565- 1575.
doi: 10.1046/j.1365-2958.2002.02839.x |
24 |
CUI Y H , QU X J . CRISPR-Cas systems of lactic acid bacteria and applications in food science[J]. Biotechnol Adv, 2024, 71, 108323.
doi: 10.1016/j.biotechadv.2024.108323 |
25 |
BHATIA S , POOJA , YADAV S K . CRISPR-Cas for genome editing: classification, mechanism, designing and applications[J]. Int J Biol Macromol, 2023, 238, 124054.
doi: 10.1016/j.ijbiomac.2023.124054 |
26 |
JINEK M , CHYLINSKI K , FONFARA I , et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337 (6096): 816- 821.
doi: 10.1126/science.1225829 |
27 |
DATSENKO K A , POUGACH K , TIKHONOV A , et al. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system[J]. Nat Commun, 2012, 3 (1): 945.
doi: 10.1038/ncomms1937 |
28 |
DELTCHEVA E , CHYLINSKI K , SHARMA C M , et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase Ⅲ[J]. Nature, 2011, 471 (7340): 602- 607.
doi: 10.1038/nature09886 |
29 |
BROUNS S J J , JORE M M , LUNDGREN M , et al. Small CRISPR RNAs guide antiviral defense in prokaryotes[J]. Science, 2008, 321 (5891): 960- 964.
doi: 10.1126/science.1159689 |
30 |
KOMOR A C , KIM Y B , PACKER M S , et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533 (7603): 420- 424.
doi: 10.1038/nature17946 |
31 |
YANG L , HUO Y N , WANG M , et al. Engineering APOBEC3A deaminase for highly accurate and efficient base editing[J]. Nat Chem Biol, 2024, 20 (9): 1176- 1187.
doi: 10.1038/s41589-024-01595-4 |
32 |
SMEKALOVA E M , MARTINEZ M G , COMBE E , et al. Cytosine base editing inhibits hepatitis B virus replication and reduces HBsAg expression in vitro and in vivo[J]. Mol Ther Nucleic Acids, 2024, 35 (1): 102112.
doi: 10.1016/j.omtn.2023.102112 |
33 |
GAUDELLI N M , KOMOR A C , REES H A , et al. Publisher correction: programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J]. Nature, 2018, 559 (7714): E8- E8.
doi: 10.1038/s41586-018-0070-x |
34 | 丁一格. ABEs介导的FecB基因突变滩羊的制备[D]. 杨凌: 西北农林科技大学, 2020. |
DING Y G. Highly efficient generation of sheep with a defined FecB mutation via afenine base editing[D]. Yangling: Northwest A&F University, 2020. (in Chinese) | |
35 |
KURT I C , ZHOU R H , IYER S , et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells[J]. Nat Biotechnol, 2021, 39 (1): 41- 46.
doi: 10.1038/s41587-020-0609-x |
36 |
CHEN L , ZHU B Y , RU G M , et al. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing[J]. Nat Biotechnol, 2023, 41 (5): 663- 672.
doi: 10.1038/s41587-022-01532-7 |
37 |
KAPLANIS J , AKAWI N , GALLONE G , et al. Exome-wide assessment of the functional impact and pathogenicity of multinucleotide mutations[J]. Genome Res, 2019, 29 (7): 1047- 1056.
doi: 10.1101/gr.239756.118 |
38 |
SAKATA R C , ISHIGURO S , MORI H , et al. Base editors for simultaneous introduction of C-to-T and A-to-G mutations[J]. Nat Biotechnol, 2020, 38 (7): 865- 869.
doi: 10.1038/s41587-020-0509-0 |
39 |
ANZALONE A V , RANDOLPH P B , DAVIS J R , et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576 (7785): 149- 157.
doi: 10.1038/s41586-019-1711-4 |
40 |
ZHOU S W , LENK L J , GAO Y W , et al. Generation of sheep with defined FecBB and TBXT mutations and porcine blastocysts with KCNJ5G151R/+ mutation using prime editing[J]. BMC Genomics, 2023, 24 (1): 313.
doi: 10.1186/s12864-023-09409-y |
41 |
DOMAN J L , SOUSA A A , RANDOLPH P B , et al. Designing and executing prime editing experiments in mammalian cells[J]. Nat Protoc, 2022, 17 (11): 2431- 2468.
doi: 10.1038/s41596-022-00724-4 |
42 |
LI A C , ZHU Z L , YANG J , et al. Precise insertion of AttB sequences in goat genome using enhanced prime editor[J]. Int J Mol Sci, 2024, 25 (17): 9486.
doi: 10.3390/ijms25179486 |
43 |
YAMANO T , NISHIMASU H , ZETSCHE B , et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA[J]. Cell, 2016, 165 (4): 949- 962.
doi: 10.1016/j.cell.2016.04.003 |
44 |
FONFARA I , RICHTER H , BRATOVI AČG M , et al. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA[J]. Nature, 2016, 532 (7600): 517- 521.
doi: 10.1038/nature17945 |
45 |
MING M L , REN Q R , PAN C T , et al. CRISPR-Cas12b enables efficient plant genome engineering[J]. Nat Plants, 2020, 6 (3): 202- 208.
doi: 10.1038/s41477-020-0614-6 |
46 |
XU X S , CHEMPARATHY A , ZENG L P , et al. Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing[J]. Mol Cell, 2021, 81 (20): 4333- 4345.e4.
doi: 10.1016/j.molcel.2021.08.008 |
47 |
KAMPMANN M . CRISPRi and CRISPRa screens in mammalian cells for precision biology and medicine[J]. ACS Chem Biol, 2018, 13 (2): 406- 416.
doi: 10.1021/acschembio.7b00657 |
48 |
BJÅNES E , STREAM A , JANSSEN A B , et al. An efficient in vivo-inducible CRISPR interference system for group A Streptococcus genetic analysis and pathogenesis studies[J]. mBio, 2024, 15 (8): e0084024.
doi: 10.1128/mbio.00840-24 |
49 |
CHEN F B , LIAN M , MA B X , et al. Multiplexed base editing through Cas12a variant-mediated cytosine and adenine base editors[J]. Commun Biol, 2022, 5 (1): 1163.
doi: 10.1038/s42003-022-04152-8 |
50 |
LI T W , ZHU L W , XIAO B X , et al. CRISPR-Cpf1-mediated genome editing and gene regulation in human cells[J]. Biotechnol Adv, 2019, 37 (1): 21- 27.
doi: 10.1016/j.biotechadv.2018.10.013 |
51 | LIANG R H, HE Z X, ZHAO K T, et al. Prime editing using CRISPR-Cas12a and circular RNAs in human cells[J/OL]. Nat Biotechnol, 2024, doi: 10.1038/s41587-023-02095-x. |
52 |
REN J L , HAI T , CHEN Y C , et al. Improve meat production and virus resistance by simultaneously editing multiple genes in livestock using Cas12iMax[J]. Sci China Life Sci, 2024, 67 (3): 555- 564.
doi: 10.1007/s11427-023-2407-0 |
53 |
STRECKER J , LADHA A , GARDNER Z , et al. RNA-guided DNA insertion with CRISPR-associated transposases[J]. Science, 2019, 365 (6448): 48- 53.
doi: 10.1126/science.aax9181 |
54 |
GUPTA R , GHOSH A , CHAKRAVARTI R , et al. Cas13d: a new molecular scissor for transcriptome engineering[J]. Front Cell Dev Biol, 2022, 10, 866800.
doi: 10.3389/fcell.2022.866800 |
55 | LI Z X , LI Z H , CHENG X L , et al. Intrinsic targeting of host RNA by Cas13 constrains its utility[J]. Nat Biomed Eng, 2024, 8 (2): 177- 192. |
56 |
GRUBER C , KRAUTNER L , BERGANT V , et al. Engineered, nucleocytoplasmic shuttling Cas13d enables highly efficient cytosolic RNA targeting[J]. Cell Discov, 2024, 10 (1): 42.
doi: 10.1038/s41421-024-00672-1 |
57 |
ZIMMERMANN A , PRIETO-VIVAS J E , CAUTEREELS C , et al. A Cas3-base editing tool for targetable in vivo mutagenesis[J]. Nat Commun, 2023, 14 (1): 3389.
doi: 10.1038/s41467-023-39087-z |
58 |
YOSHIMI K , TAKESHITA K , KODERA N , et al. Dynamic mechanisms of CRISPR interference by Escherichia coli CRISPR-Cas3[J]. Nat Commun, 2022, 13 (1): 4917.
doi: 10.1038/s41467-022-32618-0 |
59 |
XI H M , REN Y J , REN F , et al. Recent advances in isolation, identification, and culture of mammalian spermatogonial stem cells[J]. Asian J Androl, 2022, 24 (1): 5- 14.
doi: 10.4103/aja.aja_41_21 |
60 | YANG H , DENG M T , LV W L , et al. Overexpression of bmp4, dazl, nanos3 and sycp2 in Hu sheep leydig cells using CRISPR/dcas9 system promoted male germ cell related gene expression[J]. Biology (Basel), 2022, 11 (2): 289. |
61 | 杨花, 刘孜斐, 吕文莉, 等. 基于CRISPR/Cas9系统构建绵羊VASA基因敲入载体及验证[J]. 生物工程学报, 2023, 39 (10): 4219- 4233. |
YANG H , LIU Z F , LÜ W L , et al. Construction and validation of sheep VASA gene knock-in vector based on CRISPR/Cas9 system[J]. Chinese Journal of Biotechnology, 2023, 39 (10): 4219- 4233. | |
62 | 郭善军, 李晶, 王澍弘, 等. 基于CRISPR/Cas9敲除技术研究Gata4基因在雄性小鼠睾丸发育中的功能[J]. 畜牧与兽医, 2018, 50 (8): 36- 39. |
GUO S J , LI J , WANG S H , et al. Study on the founction of Gata4 gene in the testis development of male mice based on the CRISPR/Cas9 technique[J]. Animal Husbandry & Veterinary Medicine, 2018, 50 (8): 36- 39. | |
63 | 吴艳芳. MSTN基因敲除和FecB基因突变滩羊扩繁试验[D]. 杨凌: 西北农林科技大学, 2021. |
WU Y F. Breeding experiment of MSTN gene konckout tan sheep and FecB gene mutation tan sheep[D]. Yangling: Northwest A&F University, 2021. (in Chinese) | |
64 |
GIM G M , UHM K H , KWON D H , et al. Germline transmission of MSTN knockout cattle via CRISPR-Cas9[J]. Theriogenology, 2022, 192, 22- 27.
doi: 10.1016/j.theriogenology.2022.08.021 |
65 |
DOS SANTOS-NETO P C , CUADRO F , SOUZA-NEVES M , et al. Refinements in embryo manipulation applied to CRISPR technology in livestock[J]. Theriogenology, 2023, 208, 142- 148.
doi: 10.1016/j.theriogenology.2023.05.028 |
66 |
郭建凤, 蔺海朝, 谢晋唐, 等. 不同性别黑盖猪胴体性能、肉质性状及肌肉氨基酸和脂肪酸含量比较[J]. 养猪, 2021, (6): 49- 51.
doi: 10.3969/j.issn.1002-1957.2021.06.016 |
GUO J F , LIN H C , XIE J T , et al. Gender differences in immunity of the mice infected with Trichinella spiralis[J]. Swine Production, 2021, (6): 49- 51.
doi: 10.3969/j.issn.1002-1957.2021.06.016 |
|
67 | 王敏, 罗晓磊, 沈磊, 等. 感染旋毛虫小鼠免疫能力的性别差异研究[J]. 中国人兽共患病学报, 2020, 36 (1): 1- 6. |
WANG M , LUO X L , SHEN L , et al. Gender differences in immunity of the mice infected with Trichinella spiralis[J]. Chinese Journal of Zoonoses, 2020, 36 (1): 1- 6. | |
68 | 吴宁. Sry基因沉默对小鼠胚胎性别决定基因及性腺发育的影响[D]. 北京: 中国农业科学院, 2008. |
WU N. Effects of Sry silencing on mouse embryos sex determination genes and gonad development[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008. (in Chinese) | |
69 |
KURTZ S , LUCAS-HAHN A , SCHLEGELBERGER B , et al. Knockout of the HMG domain of the porcine SRY gene causes sex reversal in gene-edited pigs[J]. Proc Natl Acad Sci U S A, 2021, 118 (2): e2008743118.
doi: 10.1073/pnas.2008743118 |
70 |
ZUO E W , HUO X N , YAO X , et al. CRISPR/Cas9-mediated targeted chromosome elimination[J]. Genome Biol, 2017, 18 (1): 224.
doi: 10.1186/s13059-017-1354-4 |
71 | 霍梦飞, 孟繁明, 王塑天, 等. 靶向切割猪Y染色体的CRISPR/Cas9载体构建及功能验证[J]. 华南农业大学学报, 2023, 44 (2): 187- 196. |
HUO M F , MENG F M , WANG S T , et al. Construction and functional validation of CRISPR/Cas9 vector targeting pig Y chromosome cutting[J]. Journal of South China Agricultural University, 2023, 44 (2): 187- 196. | |
72 | 赵秀玲. 应用CRISPR/Cas9介导的Y染色体标记技术进行哺乳动物胚胎性别鉴定的研究[D]. 南宁: 广西大学, 2020. |
ZHAO X L. The research on sex identification of embryos by the technology of marked Y chromosome mediated by CRISPR/Cas9[D]. Nanning: Guangxi University, 2020. (in Chinese) | |
73 |
WANG M , SUN Z L , DING F R , et al. Efficient TALEN-mediated gene knockin at the bovine Y chromosome and generation of a sex-reversal bovine[J]. Cell Mol Life Sci, 2021, 78 (13): 5415- 5425.
doi: 10.1007/s00018-021-03855-1 |
74 |
LUTHRINGER R , RAPHALEN M , GUERRA C , et al. Repeated co-option of HMG-box genes for sex determination in brown algae and animals[J]. Science, 2024, 383 (6689): eadk5466.
doi: 10.1126/science.adk5466 |
75 |
BRINSTER R L , ZIMMERMANN J W . Spermatogenesis following male germ-cell transplantation[J]. Proc Natl Acad Sci U S A, 1994, 91 (24): 11298- 11302.
doi: 10.1073/pnas.91.24.11298 |
76 |
CICCARELLI M , GIASSETTI M I , MIAO D Q , et al. Donor-derived spermatogenesis following stem cell transplantation in sterile NANOS2 knockout males[J]. Proc Natl Acad Sci U S A, 2020, 117 (39): 24195- 24204.
doi: 10.1073/pnas.2010102117 |
77 |
MUELLER M L , MCNABB B R , OWEN J R , et al. Germline ablation achieved via CRISPR/Cas9 targeting of NANOS3 in bovine zygotes[J]. Front Genome Ed, 2023, 5, 1321243.
doi: 10.3389/fgeed.2023.1321243 |
78 | 张仙玉. 内源性精子消融的动物模型制备及精原干细胞移植研究[D]. 长沙: 湖南农业大学, 2020. |
ZHANG X Y. Establishment of animal model with ablation of endogenous spermatogenesis and SSCs transplantation[D]. Changsha: Hunan Agricultural University, 2020. (in Chinese) | |
79 | TANIHARA F , HIRATA M , NGUYEN N T , et al. Efficient generation of GGTA1-deficient pigs by electroporation of the CRISPR/Cas9 system into in vitro-fertilized zygotes[J]. BMC Biotechnol, 2020, 20 (1): 40. |
80 |
张晨俭, 李隐侠, 丁强, 等. CRISPR/Cas9技术高效制备山羊SOCS2基因编辑胚胎[J]. 畜牧兽医学报, 2024, 55 (1): 129- 141.
doi: 10.11843/j.issn.0366-6964.2024.01.014 |
ZHANG C J , LI Y X , DING Q , et al. Efficient preparation of CRISPR/Cas9-mediated goat SOCS2 gene edited embryos[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (1): 129- 141.
doi: 10.11843/j.issn.0366-6964.2024.01.014 |
|
81 | 包心茹, 陈卯森, 钟洁, 等. CRISPR/Cas12a基因组编辑技术及应用[J]. 生物工程杂志, 2023, 43 (10): 32- 42. |
BAO X R , CHEN M S , ZHONG J , et al. Characteristics and application of CRISPR/Cas12a genome editing technology[J]. China Biotechnology, 2023, 43 (10): 32- 42. | |
82 |
DUO T Q , LIU X H , MO D L , et al. Single-base editing in IGF2 improves meat production and intramuscular fat deposition in Liang Guang Small Spotted pigs[J]. J Animal Sci Biotechnol, 2023, 14 (1): 141.
doi: 10.1186/s40104-023-00930-4 |
83 |
YOU W N , LI M J , QI Y L , et al. CRISPR/Cas9-mediated specific integration of Fat-1 and IGF-1 at the p Rosa26 locus[J]. Genes (Basel), 2021, 12 (7): 1027.
doi: 10.3390/genes12071027 |
84 | WHITWORTH K M , LEE K , BENNE J A , et al. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos[J]. Biol Reprod, 2014, 91 (3): 78. |
85 | LU T Y , SONG Z Y , LI Q Y , et al. Overexpression of histone deacetylase 6 enhances resistance to porcine reproductive and respiratory syndrome virus in pigs[J]. PLoS One, 2017, 12 (1): e0169317. |
86 | KIOULAPHIDES S , GARCÍA A J . Encapsulation and immune protection for type 1 diabetes cell therapy[J]. Adv Drug Deliv Rev, 2024, 207, 115205. |
87 | FREEDMAN B S . Hopes and difficulties for blastocyst complementation[J]. Nephron, 2018, 138 (1): 42- 47. |
88 | GIM G M , UHM K H , KWON D H , et al. Germline transmission of MSTN knockout cattle via CRISPR-Cas9[J]. Theriogenology, 2022, 192, 22- 27. |
89 | EDICK A M , AUDETTE J , BURGOS S A . CRISPR-Cas9-mediated knockout of GCN2 reveals a critical role in sensing amino acid deprivation in bovine mammary epithelial cells[J]. J Dairy Sci, 2021, 104 (1): 1123- 1135. |
90 | XU X L , WU S J , QI S Y , et al. Increasing GSH-Px activity and activating wnt pathway promote fine wool growth in FGF5-edited sheep[J]. Cells, 2024, 13 (11): 985. |
[1] | 邹惠影, 李俊良, 朱化彬. 引导编辑系统的研究与应用进展[J]. 畜牧兽医学报, 2022, 53(11): 3721-3730. |
[2] | 王玮玮,刘瑞琪,吴勇延,杨严格,王勇胜,卿素珠. CRISPR/Cas9基因编辑系统研究进展及其在动物基因编辑研究中的应用[J]. 畜牧兽医学报, 2016, 47(7): 1299-1305. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||