畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (8): 4018-4030.doi: 10.11843/j.issn.0366-6964.2025.08.039
张皓阳1(), 刘薇1,2, 孙文清1, 徐玉凤1,2, 刘芷芹1,2, 杨子辉1,2, 董朕1,2,*(
), 曾建国1,2,*(
)
收稿日期:
2024-11-13
出版日期:
2025-08-23
发布日期:
2025-08-28
通讯作者:
董朕,曾建国
E-mail:1481637830@qq.com;13104100291@163.com;zengjianguo@hunau.edu.cn
作者简介:
张皓阳(1998-),女,山东梁山人,硕士,主要从事兽药代谢与残留研究,E-mail: 1481637830@qq.com
基金资助:
ZHANG Haoyang1(), LIU WEI1,2, SUN Wenqing1, XU Yufeng1,2, LIU Zhiqin1,2, YANG Zihui1,2, DONG Zhen1,2,*(
), ZENG Jianguo1,2,*(
)
Received:
2024-11-13
Online:
2025-08-23
Published:
2025-08-28
Contact:
DONG Zhen, ZENG Jianguo
E-mail:1481637830@qq.com;13104100291@163.com;zengjianguo@hunau.edu.cn
摘要:
本研究旨在观察博落回提取物(MCE)对草鱼的促生长作用以及表征其主要成分血根碱(SAN)和白屈菜红碱(CHE)在草鱼中的药代动力学特性和肌肉残留。选用450尾约10.5 g的草鱼,随机分为5组,分别饲喂含0、30、60和120 mg·kg-1博落回散(MCEP)和盐酸甜菜碱的日粮,饲养60 d。选取120尾250 g左右的草鱼进行药代动力学研究,随机分为5组,分别静脉注射(0.0012、0.012和0.024 mg·kg-1)和灌胃(0.06和0.6 mg·kg-1)MCE,使用液相色谱串联三重四级杆质谱(LC-QQQ-MS)测定血液中SAN和CHE含量。选取150尾50 g左右的草鱼饲喂含MCEP的日粮(60 mg·kg-1饲料)60 d,使用LC-QQQ-MS测定草鱼带皮肌肉中SAN和CHE含量。结果表明:MCE可以显著提高草鱼的生长性能和肥满度(P < 0.05);灌胃0.6 mg·kg-1 MCE后,SAN和CHE主要的药代动力学(PK)参数分别为Cmax=(19.157±1.924)和(6.388±1.356) μg·L-1,AUC(0-t)=(3.317±0.274) 和(0.651±0.114)(μg·L-1)·h,T1/2=(9.065±2.286) h(CHE无有效数据)。静脉注射0.024 mg·kg-1 MCE,5 min后SAN和CHE的AUC(0-t)分别为(37.132±4.124)和(0.614±0.039)(μg·L-1)·h,AUC(0-∞)分别为(60.583±7.512)和(0.750±0.055)(μg·L-1)·h;残留试验中,肌肉中SAN和CHE在停药后第5天降至定量限下。饲料中添加60 mg·kg-1 MCEP能够显著提高草鱼的生长性能;SAN和CHE均表现出吸收快,分布广和消除迅速的PK性质,但在高剂量下使用,两种活性物质会表现出明显的非线性PK特征;临床使用MCE后停药5 d,肌肉中SAN和CHE基本完全消除。这项研究对MCE的合理用药,开发以及相关的风险评估具有重要意义。
中图分类号:
张皓阳, 刘薇, 孙文清, 徐玉凤, 刘芷芹, 杨子辉, 董朕, 曾建国. 博落回提取物对草鱼生长性能的影响及其效用成分的药代动力学和残留消除研究[J]. 畜牧兽医学报, 2025, 56(8): 4018-4030.
ZHANG Haoyang, LIU WEI, SUN Wenqing, XU Yufeng, LIU Zhiqin, YANG Zihui, DONG Zhen, ZENG Jianguo. Effects of Macleaya Cordata Extract on Growth Performance of Grass Carp and Pharmacokinetics and Residue Elimination of Its Utility Components[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 4018-4030.
表 2
MCE对于草鱼生长性能的影响($\bar x \pm s$)"
组别 Groups | 初始体重/g Initial body weight | 终末体重/g Terminal body weight | 相对增重率/% Relative weight gain rate | 平均日增重/g Average daily gain | 饵料系数 Feed coefficient |
空白对照组 Blank control group | 10.3±0.4a | 23.3±4.3a | 127.0±45.5a | 0.22±0.07a | 2.58±1.09b |
甜菜碱组 Betaine group | 10.7±0.5a | 27.6±2.7a | 157.3±14.5a | 0.28±0.04a | 1.80±0.25ab |
30 mg·kg-1 MCEP | 10.4±0.6a | 24.1±3.2a | 131.1±16.8a | 0.23±0.04a | 2.25±0.39ab |
60 mg·kg-1 MCEP | 10.7±0.7a | 37.1±12.3b | 242.7±96.2b | 0.44±0.19b | 1.34±0.63a |
120 mg·kg-1 MCEP | 10.3±0.5a | 24.3±1.6a | 135.1±9.9a | 0.23±0.02a | 2.16±0.19ab |
表 3
MCEP对于草鱼形体指标的影响($\bar x \pm s$)"
组别 Groups | 体长/cm Body length | 体重/g Body weight | 肝脏重/g Liver weight | 肝体比 Hepatosomatic index | 肥满度 Fulton′s condition index (K) |
空白对照组 Blank control group | 11.3±1.3 | 23.3±4.3 | 0.50±0.08 | 2.16±0.06a | 1.65±0.24a |
甜菜碱组 Betaine group | 12.4±0.8 | 27.6±2.7 | 0.50±0.08 | 1.82±0.29a | 1.46±0.14a |
30 mg·kg-1 MCEP | 11.6±1.0 | 24.1±3.2 | 0.50±0.00 | 2.11±0.27a | 1.54±0.19a |
60 mg·kg-1 MCEP | 12.6±1.4 | 37.1±12.3 | 0.67±0.05 | 1.99±0.73b | 1.79±0.18b |
120 mg·kg-1 MCEP | 11.8±0.4 | 24.3±1.6 | 0.53±0.05 | 2.16±0.14a | 1.47±0.08a |
表 4
血浆和肌肉中SAN和CHE的标准曲线、线性范围及相关系数(R2)"
样品 Sample | 分析物 Analyte | 回归方程 Regression equation | 相关系数 R2 | 线性范围 Linearity range |
血浆 Plasma | SAN | y=0.002 104*x+0.007 727 | 0.999 8 | 0.5~200.0 μg·L-1 |
CHE | y=0.013 691*x+0.040 129 | 0.999 6 | 0.5~200.0 μg·L-1 | |
肌肉 Muscle | SAN | y=0.007 480*x+0.001 696 | 0.999 9 | 5.0~1 000.0 μg·kg-1 |
CHE | y=0.059 915*x-0.014 136 | 0.999 9 | 5.0~1 000.0 μg·kg-1 |
表 5
血浆和肌肉中SAN和CHE的基质效应"
样品 Sample | 分析物 Analyte | 理论浓度/(μg·L-1) Theoretical concentration | 平均基质效应/% Mean matrix effect | 基质效应RSD/% RSD of matrix effect |
血浆 Plasma | SAN | 0.500 | 100.493 | 1.407 |
5.000 | 99.542 | 0.662 | ||
50.000 | 99.047 | 0.750 | ||
CHE | 0.500 | 100.408 | 1.157 | |
5.000 | 96.982 | 0.752 | ||
50.000 | 103.065 | 1.060 | ||
肌肉 Muscle | SAN | 0.500 | 100.332 | 0.422 |
5.000 | 99.635 | 0.272 | ||
50.000 | 99.502 | 0.389 | ||
CHE | 0.500 | 100.376 | 0.651 | |
5.000 | 99.820 | 0.577 | ||
50.000 | 100.242 | 0.675 |
表 6
血浆和肌肉中SAN和CHE的回收率和精密度(n=6)"
基质 Matrix | 分析物 Analyte | 浓度/(μg·L-1) Concentration | 回收率/% Recovery rate | 批内精密度/% Intra-batch precision | 批间精密度/% Inter-batch precision |
血浆 Plasma | SAN | 0.500 | 98.895 | 5.273 | 5.552 |
5.000 | 99.869 | 5.178 | 3.400 | ||
50.000 | 98.119 | 3.129 | 2.338 | ||
CHE | 0.500 | 98.002 | 4.522 | 2.691 | |
5.000 | 99.350 | 0.816 | 2.094 | ||
50.000 | 94.204 | 3.440 | 2.712 | ||
肌肉 Muscle | SAN | 0.500 | 99.309 | 0.495 | 0.478 |
5.000 | 98.941 | 0.408 | 0.413 | ||
50.000 | 97.862 | 0.505 | 0.519 | ||
CHE | 0.500 | 100.587 | 0.516 | 0.576 | |
5.000 | 96.201 | 0.474 | 0.473 | ||
50.000 | 97.656 | 0.525 | 0.501 |
表 7
血浆和肌肉中SAN和CHE在不同环境下稳定性(n=6)"
样品 Sample | 分析物 Analyte | QC理论浓度/(μg·L-1) QC theoretical concentration | 进样器稳定性 Stability at injector | 长期稳定性 Long-term stability | 室温稳定性 Room temperature stability | 冻融稳定性 Freeze-thaw stability | |||||||
实测浓度/(μg·L-1) Measured concentration | RSD/% | 实测浓度/(μg·L-1) Measured concentration | RSD/% | 实测浓度/(μg·L-1) Measured concentration | RSD/% | 实测浓度/(μg·L-1) Measured concentration | RSD/% | ||||||
血浆 Plasma | SAN | 0.500 | 0.845 | 3.226 | 0.566 | 2.387 | 0.548 | 2.239 | 0.552 | 5.113 | |||
5.000 | 5.742 | 4.210 | 5.122 | 1.103 | 5.186 | 2.405 | 5.519 | 3.196 | |||||
50.000 | 58.729 | 1.629 | 50.542 | 0.571 | 53.678 | 3.871 | 52.836 | 1.926 | |||||
CHE | 0.500 | 0.803 | 7.880 | 0.570 | 2.761 | 0.563 | 3.476 | 0.549 | 3.678 | ||||
5.000 | 5.252 | 3.922 | 5.130 | 1.732 | 5.225 | 2.952 | 5.557 | 4.380 | |||||
50.000 | 58.139 | 2.829 | 50.420 | 0.390 | 54.155 | 2.043 | 52.408 | 1.692 | |||||
肌肉 Muscle | SAN | 0.500 | 0.568 | 0.237 | 0.554 | 0.823 | 0.564 | 0.550 | 0.565 | 0.590 | |||
5.000 | 5.641 | 0.375 | 5.564 | 0.333 | 5.642 | 0.451 | 5.631 | 0.461 | |||||
50.000 | 56.425 | 0.612 | 55.622 | 0.530 | 56.556 | 0.430 | 56.253 | 0.382 | |||||
CHE | 0.500 | 0.565 | 0.730 | 0.557 | 0.533 | 0.568 | 0.315 | 0.564 | 0.341 | ||||
5.000 | 5.653 | 0.260 | 5.547 | 0.552 | 5.647 | 0.481 | 5.649 | 0.503 | |||||
50.000 | 56.375 | 0.456 | 55.466 | 0.610 | 56.468 | 0.629 | 56.529 | 0.551 |
表 8
SAN和CHE的药代动力学参数($\bar x \pm s$,n=9)"
化合物 Compounds | 参数 Parameters | 单位 Units | IH | OL | OH |
SAN | Cmax | μg·L-1 | - | 19.157±1.924 | 41.161±2.988 |
Tmax | h | - | 0.083±0.000 | 0.083±0.000 | |
AUC(0-t) | (μg·L-1) ·h | 37.132±4.124 | 3.317±0.274 | 21.037±0.708 | |
AUC(0-∞) | (μg·L-1) ·h | 60.583±7.512 | - | 29.596±2.749 | |
MRT(0-t) | h | 17.364±1.428 | 0.143±0.004 | 3.157±0.049 | |
T1/2 | h | 27.330±6.637 | - | 9.065±2.286 | |
CL | L·h-1·kg-1 | 0.380±0.074 | - | 20.433±1.944 | |
Vd | L·kg-1 | 18.464±3.317 | - | 261.945±47.457 | |
CHE | Cmax | μg·L-1 | - | 6.388±1.356 | 16.130±1.874 |
Tmax | h | - | 0.083±0.000 | 0.083±0.000 | |
AUC(0-t) | (μg·L-1) ·h | 0.614±0.039 | 0.651±0.114 | 2.415±0.160 | |
AUC(0-∞) | (μg·L-1) ·h | 0.750±0.055 | - | - | |
MRT(0-t) | h | 0.177±0.004 | 0.099±0.005 | 0.137±0.005 | |
T1/2 | h | 0.180±0.010 | - | - | |
CL | L·h-1·kg-1 | 32.163±2.441 | - | - | |
Vd | L·kg-1 | 9.065±0.573 | - | - |
1 | FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS. Fisheries & Aquaculture-Global production by production source[R/OL]. FAO Fisheries and Aquaculture Department, 2023[2024-01-30]. https://www.fao.org/fishery/statistics-query/en/global_production. |
2 |
BARRAUDO,LAVALL,LE DEVENDECL,et al.Integrons from Aeromonas isolates collected from fish: A global indicator of antimicrobial resistance and anthropic pollution[J].Aquaculture,2023,576,739768.
doi: 10.1016/j.aquaculture.2023.739768 |
3 |
LOOK Y,LETCHUMANANV,LAWJ W F,et al.Incidence of antibiotic resistance in Vibrio spp[J].Rev Aquacult,2020,12(4):2590-2608.
doi: 10.1111/raq.12460 |
4 |
HAND,YANGH,LIJ,et al.Macleaya cordata extract improves growth performance, immune responses and anti-inflammatory capacity in neonatal piglets[J].Vet Microbiol,2024,293,110090.
doi: 10.1016/j.vetmic.2024.110090 |
5 |
LIUZ H,WANGW M,ZHANGZ,et al.Natural antibacterial and antivirulence Alkaloids from Macleaya cordata against methicillin-resistant Staphylococcus aureus[J].Front Pharmacol,2022,13,813172.
doi: 10.3389/fphar.2022.813172 |
6 |
CHENX,ZHANGF,LIH,et al.The combination of macleaya extract and glucose oxidase improves the growth performance, antioxidant capacity, immune function and cecal microbiota of piglets[J].Front Vet Sci,2023,10,1173494.
doi: 10.3389/fvets.2023.1173494 |
7 |
LIUZ Y,WANGX L,OUS Q,et al.Sanguinarine modulate gut microbiome and intestinal morphology to enhance growth performance in broilers[J].PLoS One,2020,15(6):e0234920.
doi: 10.1371/journal.pone.0234920 |
8 | 中华人民共和国农业部渔业局,中国水产学会水产技术推广总站.中国渔业统计年鉴(2023)[M].北京:中国农业出版社,2023. |
BUREAU OF FISHERIES, MINISTRY OF AGRICULTURE, PEOPLE'S REPUBLIC OF CHINA,NATIONAL GENERAL STATION FOR THE PROMOTION OF AQUATIC TECHNOLOGY, CHINA SOCIETY OF FISHERIES.China fishery statistical yearbook (2023)[M].Beijing:China Agriculture Press,2023. | |
9 | 李健, 王群, 刘淇, 等. 渔用药物代谢动力学和残留试验技术规范: SC/T 1106-2010[S]. 北京: 中华人民共和国农业农村部, 2010. |
LI J, WANG Q, LIU Q, et al. Technical specification for pharmacokinetics and residue test of fishery drugs: sc/t 1106-2010[S]. Beijing: Ministry of Agriculture and Rural Affairs, PRC, 2010. (in Chinese) | |
10 | 国家药典委员会.中华人民共和国药典(四部): 9012生物样品定量分析方法验证指导原则[M].2020年版北京:中国医药科技出版社,2020. |
CHINESE PHARMACOPOEIA COMMISSION.Pharmacopoeia of the People's Republic of China (Volume Ⅳ): 9012 guidelines for validation of quantitative analytical methods for biological samples[M].2020 editionBeijing:China Medical Science Press,2020. | |
11 |
KHADEMA,SOLERL,EVERAERTN,et al.Growth promotion in broilers by both oxytetracycline and Macleaya cordata extract is based on their anti-inflammatory properties[J].Brit J Nutr,2014,112(7):1110-1118.
doi: 10.1017/S0007114514001871 |
12 |
SUY,CHANGG,LIUJ,et al.Dietary sanguinarine supplementation improves the growth performance and intestinal immunity of broilers[J].Anim Nutr,2024,19,76-89.
doi: 10.1016/j.aninu.2024.05.009 |
13 |
SHIY,ZHONGL,CHENK,et al.Sanguinarine attenuates hydrogen peroxide-induced toxicity in liver of Monopterus albus: Role of oxidative stress, inflammation and apoptosis[J].Fish Shellfish Immun,2022,125,190-199.
doi: 10.1016/j.fsi.2022.05.013 |
14 |
YAOJ Y,SHENJ Y,LIX L,et al.Effect of sanguinarine from the leaves of Macleaya cordata against Ichthyophthirius multifiliis in grass carp(Ctenopharyngodon idella)[J].Parasitol Res,2010,107(5):1035-1042.
doi: 10.1007/s00436-010-1966-z |
15 |
ZHANGC,LINGF,CHIC,et al.Effects of praziquantel and sanguinarine on expression of immune genes and susceptibility to Aeromonas hydrophila in goldfish(Carassius auratus)infected with Dactylogyrus intermedius[J].Fish Shellfish Immun,2013,35(4):1301-1308.
doi: 10.1016/j.fsi.2013.08.001 |
16 | WANGA,ZHANGZ,DINGQ,et al.Intestinal cetobacterium and acetate modify glucose homeostasis via parasympathetic activation in zebrafish[J].Gut Microbes,2021,13(1):1-15. |
17 | DEHAUT,CHERLETM,CROUBELSS,et al.A high dose of dietary berberine improves gut wall morphology, despite an expansion of enterobacteriaceae and a reduction in beneficial microbiota in broiler chickens[J].mSystems,2023,8(1):e01239-22. |
18 |
NAYAKS K.Role of gastrointestinal microbiota in fish[J].Aquac Res,2010,41(11):1553-1573.
doi: 10.1111/j.1365-2109.2010.02546.x |
19 |
ZIELIŃSKAS,WÓJCIAK-KOSIORM,DZIĄGWA-BECKERM,et al.The activity of isoquinoline alkaloids and extracts from Chelidonium majus against pathogenic bacteria and Candida sp[J].Toxins,2019,11(7):406.
doi: 10.3390/toxins11070406 |
20 |
YANGX,LIL,SHIY,et al.Neurotoxicity of sanguinarine via inhibiting mitophagy and activating apoptosis in zebrafish and PC12 cells[J].Pestic Biochem Phys,2022,188,105259.
doi: 10.1016/j.pestbp.2022.105259 |
21 |
HUN X,CHENM,LIUY S,et al.Pharmacokinetics of sanguinarine, chelerythrine, and their metabolites in broiler chickens following oral and intravenous administration[J].J Vet Pharmacol Ther,2019,42(2):197-206.
doi: 10.1111/jvp.12729 |
22 |
ZHAON J,WANGL L,LIUZ Y,et al.Pharmacokinetics of chelerythrine and its metabolite after oral and intramuscular administrations in pigs[J].Xenobiotica,2021,51(11):1264-1270.
doi: 10.1080/00498254.2021.1882714 |
23 | 刘梦婷,胡南希,邹湘霖,等.超高效液相色谱-串联质谱法同时检测肉鸡组织中4种异喹啉类生物碱[J].中国畜牧兽医,2022,49(12):4843-4853. |
LIUM T,HUN X,ZOUX L,et al.Simultaneous determination of 4 isoquinoline alkaloids in broiler tissues by ultra-performance liquid chromatography-tandem mass spectrometry[J].China Animal Husbandry & Veterinary Medicine,2022,49(12):4843-4853. | |
24 |
PSOTOVAJ,VECERAR,ZDARILOVAA,et al.Safety assessment of sanguiritrin, alkaloid fraction of Macleaya cordata, in rats[J].Vet Med-Czech,2006,51(4):145-155.
doi: 10.17221/5534-VETMED |
25 |
SANDORR,MIDLIKA,SEBRLOVAK,et al.Identification of metabolites of selected benzophenanthridine alkaloids and their toxicity evaluation[J].J Pharmaceut Biomed,2016,121,174-180.
doi: 10.1016/j.jpba.2016.01.024 |
26 |
POSADAM M,SMITHD E.In vivo absorption and disposition of cefadroxil after escalating oral doses in wild-type and PepT1 knockout mice[J].Pharm Res-Dordr,2013,30(11):2931-2939.
doi: 10.1007/s11095-013-1168-3 |
27 |
SUNW,XUY,LIUZ,et al.Studies on pharmacokinetic properties and intestinal absorption mechanism of sanguinarine chloride: in vivo and in situ[J].Toxicol Mech Method,2025,35(1):43-52.
doi: 10.1080/15376516.2024.2383366 |
28 |
CHAPELSKYM C,MARTIND E,TENEROD M,et al.A dose proportionality study of eprosartan in healthy male volunteers[J].J Clin Pharmacol,1998,38(1):34-39.
doi: 10.1002/j.1552-4604.1998.tb04374.x |
29 |
SNOEYSJ,BEUMONTM,MONSHOUWERM,et al.Mechanistic understanding of the nonlinear pharmacokinetics and intersubject variability of simeprevir: A PBPK-guided drug development approach[J].Clin Pharmacol Ther,2016,99(2):224-234.
doi: 10.1002/cpt.206 |
30 | 张宁,喻文娟,王翔凌,等.草鱼肝微粒体的提取及CYP酶活性的测定[J].海洋渔业,2007(2):148-152. |
ZHANGN,YUW J,WANGX L,et al.Cytochrome P450 contents and activity in hepatic microsome of grass carp(Ctenopharyngodon idellus)[J].Marine Fisheries,2007(2):148-152. | |
31 |
QIX Y,LIANGS C,GEG B,et al.Inhibitory effects of sanguinarine on human liver cytochrome P450 enzymes[J].Food Chem Toxicol,2013,56,392-397.
doi: 10.1016/j.fct.2013.02.054 |
32 | 李雪梅. 土霉素和磺胺甲噁唑在三种淡水鱼体内的药动学和残留研究[D]. 重庆: 西南师范大学, 2005: 1-73. |
LI X M. Pharmacokinetics and residues of oxytetracycline and sulfamethoxazole in three freshwater fishes[D]. Chongqing: Southwest China Normal University, 2005: 1-73. (in Chinese) | |
33 |
DONGZ,TANGS S,MAX L,et al.Preclinical safety evaluation of Macleaya Cordata extract: A re-assessment of general toxicity and genotoxicity properties in rodents[J].Front Pharmaco,2022,13,980918.
doi: 10.3389/fphar.2022.980918 |
34 | 刘永涛,郭东方,杨莉,等.喹烯酮在建鲤和斑点叉尾鮰体内的残留消除规律研究[J].水生态学杂志,2009,30(5):95-98. |
LIUY T,GUOD F,YANGL,et al.Study on residues of quinocetone in Jian carp(Cyprinus carpiovar Jian)and channel catfish(Ictalurus punctatus)[J].Journal of Hydroecology,2009,30(5):95-98. | |
35 | LIJ,HUANGL,PANY,et al.Tissue depletion of quinocetone and its five major metabolites in pigs, broilers, and carp fed quinocetone premix[J].J Agric Food Chem,2014,62(42):10348-10356. |
[1] | 孙淑佳, 郑嘉祺, 卢姝婉, 刘金松, 姚春雷, 杨彩梅, 许英蕾, 张瑞强. 乳酸菌对黄羽肉鸡生长性能、消化功能和养分利用率的影响[J]. 畜牧兽医学报, 2025, 56(7): 3335-3343. |
[2] | 陈泽晗, 张偌益, 林惠莹, 曾春丽, 林福, 李健. 基于HPLC指纹图谱和网络药理学的白屈菜缓解IPEC-J2细胞炎性损伤作用研究[J]. 畜牧兽医学报, 2025, 56(5): 2466-2480. |
[3] | 朱云, 王钰明, 孙晓晓, 陈辉, 赵峰, 解竞静, 陈一凡, 萨仁娜. 低蛋白多元化饲粮添加玉米蛋白粉对白羽肉鸡生长性能和消化特性的影响[J]. 畜牧兽医学报, 2025, 56(4): 1802-1812. |
[4] | 吴秀菊, 夏培, 罗懿豪, 罗劲炜, 薛梦迪, 柯炎杭, 李娟, 吕景智. 饲粮中添加乳果糖对肉兔生长性能、血清指标和肉品质的影响[J]. 畜牧兽医学报, 2025, 56(4): 1813-1824. |
[5] | 张雨, 王琪茹, 师鑫潮, 郭子明, 何欣, 张铁, 赵兴华. 厚朴酚固体分散体对犊牛生长性能、血清抗氧化能力和肠道微生物的影响[J]. 畜牧兽医学报, 2025, 56(2): 943-952. |
[6] | 白国松, 滕春然, 王俊洪, 钟儒清, 马腾, 陈亮, 张宏福. 酶解玉米蛋白粉替代鱼粉和豆粕对断奶仔猪生长性能和肠道健康的影响[J]. 畜牧兽医学报, 2025, 56(2): 953-968. |
[7] | 张纪桥, 蔡瑛婕, 李雨笑, 曹敞, 李涛, 鲍秀瑜, 张建勤. 不同饲养模式下略阳乌鸡生长性能、免疫、肠道结构及盲肠菌群的对比分析[J]. 畜牧兽医学报, 2024, 55(9): 4001-4011. |
[8] | 陈雨, 修子清, MGENIMusa, 施屹, 张俊秋, 蒋小雨, 吕景智, 孙雅望. 蒲公英与木通提取物对断奶仔兔生长性能、肠道健康和药物转运体基因相对表达量的影响[J]. 畜牧兽医学报, 2024, 55(8): 3725-3739. |
[9] | 刘彬, 刘彦, 郑琛, 冯涛. 氨基葡萄糖对断奶仔猪生长性能、抗氧化能力及免疫功能的影响[J]. 畜牧兽医学报, 2024, 55(7): 3246-3254. |
[10] | 罗志斌, 欧慧敏, 李建中, 谭支良, 焦金真. 添加过瘤胃氨基酸低蛋白质饲粮对呼伦贝尔羊生长性能、养分表观消化率及肉品质的影响[J]. 畜牧兽医学报, 2024, 55(6): 2498-2509. |
[11] | 李亚霖, 甄士博, 曹林, 孙逢雪, 王利华. 植物乳杆菌及其后生元对育成期母貂生长性能、免疫功能及肠道健康的影响[J]. 畜牧兽医学报, 2024, 55(6): 2530-2539. |
[12] | 王吉, 周馨妍, 郭芳瑞, 徐秋容, 武东怡, 毛妍, 袁志航, 易金娥, 文利新, 邬静. 紫花地丁对热应激下肉鸡生长性能、肉品质和肠道菌群的改善作用[J]. 畜牧兽医学报, 2024, 55(6): 2761-2774. |
[13] | 雷艳茹, 胡晓玉, 许春红, 张晨曦, 杜文苹, 王阳光, 李东华, 孙桂荣, 李文婷, 康相涛. 5个贵妃鸡配套系生长发育规律、屠宰性能和肉品质比较分析[J]. 畜牧兽医学报, 2024, 55(4): 1521-1535. |
[14] | 李铁, 齐梦迪, 张克英, 王建萍, 白世平, 曾秋凤, 彭焕伟, 玄月, 吕莉, 丁雪梅. 育雏育成期饲粮添加益生菌对蛋鸡生长性能、血清指标、肠道健康及后续生产性能的影响[J]. 畜牧兽医学报, 2024, 55(3): 1062-1076. |
[15] | 陈鑫珠, 岳稳, 方桂友, 缪伏荣, 黄庆祥, 林平冬, 李忠荣, 刘景. 纤维对白羽肉鸡生长性能、生理生化、胃肠结构和盲肠微生物的影响[J]. 畜牧兽医学报, 2024, 55(12): 5602-5619. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||