畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (6): 2761-2774.doi: 10.11843/j.issn.0366-6964.2024.06.046
• 临床兽医 • 上一篇
王吉1,2(), 周馨妍1(
), 郭芳瑞1, 徐秋容1, 武东怡1, 毛妍1, 袁志航1, 易金娥1, 文利新1, 邬静1,*(
)
收稿日期:
2023-08-23
出版日期:
2024-06-23
发布日期:
2024-06-28
通讯作者:
邬静
E-mail:wangjics@163.com;zxy1085082373@163.com;wujing@hunau.edu.cn
作者简介:
王吉(1990-),男,湖南邵阳人,博士,主要从事兽医内科学研究,wangjics@163.com王吉和周馨妍为同等贡献作者
基金资助:
Ji WANG1,2(), Xinyan ZHOU1(
), Fangrui GUO1, Qiurong XU1, Dongyi WU1, Yan MAO1, Zhihang YUAN1, Jin'e YI1, Lixin WEN1, Jing WU1,*(
)
Received:
2023-08-23
Online:
2024-06-23
Published:
2024-06-28
Contact:
Jing WU
E-mail:wangjics@163.com;zxy1085082373@163.com;wujing@hunau.edu.cn
摘要:
旨在评估紫花地丁(Viola yedoensis Makino,VYM)对热应激下AA肉鸡生长性能、肉品质和肠道菌群的改善作用。将60只1日龄雄性AA肉鸡随机分为6个组,分别为:对照组(NT组),高剂量紫花地丁组(NT+VYM-H组);热应激组(HS组),低、中、高剂量紫花地丁热应激组(HS+VYM-L、HS+VYM-M和HS+VYM-H组,紫花地丁添加量分别为0.5%、1.5%、4.5%),2~42 d,热应激组肉鸡暴露于高温中,紫花地丁组全程饲喂添加相应剂量紫花地丁的日粮。所有肉鸡均在42日龄时屠宰,对生长性能、血清生化指标、肉品质、十二指肠形态、酶活性相关基因表达水平以及肠道菌群组成等进行检测。结果显示,在热应激条件下,与热应激组相比,1.5%紫花地丁组肉鸡29~42 d平均日增重显著升高,料重比显著降低(P < 0.05);热应激条件下,添加紫花地丁显著降低肉鸡35 d血清HSP70水平(P < 0.05),添加0.5%紫花地丁显著提高十二指肠脂肪酶活性(P < 0.05),与肉鸡胸肌生肌因子相关的Pax3、Pax7、Myog、Myod、Myf5 mRNA表达显著上调(P < 0.05),与十二指肠消化吸收功能相关的Pparα、Fatp1、B0at1、Pept1、Cat1、Eaat3 mRNA表达显著上调(P < 0.05);在热应激条件下,添加1.5%的紫花地丁显著降低了肉鸡的肌肉剪切力、肉色(P < 0.05);盲肠中,紫花地丁显著提高了肠道菌群的丰富度和多样性(P < 0.05),在门水平上,增加了拟杆菌门的丰度,且与肌肉pH(45 min)呈显著正相关;属水平上,降低了Subdoligranulum属丰度,且与十二指肠淀粉酶活性呈显著负相关。综上,在本试验条件下,日粮中补充1.5%和4.5%紫花地丁可有效减轻热应激导致的肉鸡生长性能和肉品质的降低,并能够调节其肠道菌群的平衡。本研究为紫花地丁在肉鸡生产中的应用提供了科学依据,对家禽养殖临床中热应激的防治具有参考意义。
中图分类号:
王吉, 周馨妍, 郭芳瑞, 徐秋容, 武东怡, 毛妍, 袁志航, 易金娥, 文利新, 邬静. 紫花地丁对热应激下肉鸡生长性能、肉品质和肠道菌群的改善作用[J]. 畜牧兽医学报, 2024, 55(6): 2761-2774.
Ji WANG, Xinyan ZHOU, Fangrui GUO, Qiurong XU, Dongyi WU, Yan MAO, Zhihang YUAN, Jin'e YI, Lixin WEN, Jing WU. Viola yedoensis Makino Improves the Growth Performance, Meat Quality, and Gut Microbiota of Broilers Exposed to Heat Stress[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2761-2774.
表 1
试验基础饲粮组成及营养水平"
项目Item | 含量/% Content | |
1~21天 1 to 21days | 22~42天 22 to42 days | |
日粮组成Ingredient | ||
玉米Corn | 57 | 61.5 |
豆粕Soybean meal | 31 | 24.5 |
鱼粉Fish meal | 4 | 5 |
豆油Soybean oil | 4 | 5 |
磷酸氢钙CaHPO4 | 1.47 | 1.37 |
石粉Limestone | 0.9 | 1 |
L-赖氨酸L-Lysine | 0.25 | 0.3 |
蛋氨酸Methionine | 0.2 | 0.15 |
苏氨酸Threonine | 0.15 | 0.15 |
50%氯化胆碱 Choline chloride (50%) | 0.2 | 0.2 |
氯化钠NaCl | 0.3 | 0.3 |
多维多矿 Multivitamin-mineral | 0.03 | 0.03 |
预混料Premix | 0.5 | 0.5 |
总计Total | 100 | 100 |
营养水平Nutrient levels | ||
代谢能/(MJ·kg-1) Metabolism energy | 12.77 | 13.21 |
粗蛋白Crude protein | 20.86 | 19.11 |
钙Ca | 1.03 | 1.02 |
有效磷Digestible P | 0.47 | 0.43 |
赖氨酸Lysine | 1.43 | 1.34 |
蛋氨酸Methionine | 0.54 | 0.47 |
苏氨酸Threonine | 0.96 | 0.87 |
精氨酸Arginine | 1.49 | 1.3 |
蛋氨酸+半胱氨酸 Methionine+cysteine | 0.87 | 0.77 |
表 2
PCR引物序列"
基因 Gene name | 引物序列(5′→3′) Primer sequences (5′→3′) | 登录号 Accession number |
β-actin | F: CGTGACCTGACGGACTACCT R: TGCTCGAAATCCAGTGCGAC | NM_205518.2 |
Hsp70 | F: CGGGCAAGTTTGACCTAA R: TTGGCTCCCACCCTATCTCT | NM_001006685.1 |
Pparα | F: GAATCACCCAGTGGAGCAG R: CAGTATTGGCACTTATTACGA | NM_001001464.1 |
Fatp1 | F: CGGTGCTGTTACGAGTGA R: CACGGCGTTGGAATACTT | NM_001039602 |
B0at1 | F: TACAGTGGTGGCTTCTGTTATG R: GGTATGGAAGAGTCGACGTTATG | XM_040663289.1 |
Pept1 | F: TCACTGTTGGCATGTTCCT R: TTCGCATTGCTATCACCTA | NM_204365.2 |
Cat1 | F: TGGATACCAACAGCCCATTAC R: GCCAAGGAGACTCGTAGAAAG | NM_001398060.1 |
Eaat3 | F: AAGTTGAGGACTGGGAAAT R: ATGAGGGCTGTCAGAAGTG | XM_424930.7 |
Myf5 | F: GGAGGAGGCTGAAGAAAGTG R: ATGTACCTGATGGCGTTCCT | NM_001030363.2 |
Pax3 | F: ACTACCCTGACATTTATACTCG R: TGCCTGCTTCCTCCATCTAG | NM_001397759.1 |
Pax7 | F: AGGCTGACTTCTCCATCTCTCCT R: TGTAACTGGTGGTGCTGTAGGTG | XM_025142486.2 |
Myog | F: GGAGAAGCGGAGGCTGAAG R: GCAGAGTGCTGCGTTTCAGA | NM_204184.2 |
Myod | F: CCAAAGCATGGGAAGAGTTC R: GCAGTATGGGACATGTGGAG | NM_204214.3 |
表 3
紫花地丁对热应激肉鸡血清生化指标的影响"
分组Group | GLO/(g·L-1) | ALB/(g·L-1) | LDH/(U·L-1) | CK/(U·L-1) |
NT | 18.45±0.74ab | 10.84±0.38b | 2 134.36±263.53b | 2 985.03±311.13b |
NT+VYM-H | 18.56±0.82ab | 10.48±0.60ab | 1 582.32±219.12a | 2 335.51±317.49a |
HS | 17.36±1.68a | 10.24±0.55a | 1 973.28±549.83b | 3 650.86±540.60c |
HS+VYM-L | 17.21±0.87ab | 10.41±0.26ab | 1 952.88±130.75b | 2 829.45±727.11b |
HS+VYM-M | 18.74±1.28b | 10.61±0.57ab | 1 814.19±195.90b | 2 659.46±457.50b |
HS+VYM-H | 18.28±1.14ab | 10.51±0.53ab | 1 868.22±239.40ab | 2 938.07±723.59b |
1 |
HABASHY W S , MILFORT M C , ADOMAKO K , et al. Effect of heat stress on amino acid digestibility and transporters in meat-type chickens[J]. Poult Sci, 2017, 96 (7): 2312- 2319.
doi: 10.3382/ps/pex027 |
2 | HE Y Q , MALTECCA C , TIEZZI F . Potential use of gut microbiota composition as a biomarker of heat stress in monogastric species: a review[J]. Animals (Basel), 2021, 11 (6): 1833. |
3 |
TANG L P , LIU Y L , ZHANG J X , et al. Heat stress in broilers of liver injury effects of heat stress on oxidative stress and autophagy in liver of broilers[J]. Poult Sci, 2022, 101 (10): 102085.
doi: 10.1016/j.psj.2022.102085 |
4 |
TAVANIELLO S , SLAWINSKA A , SIRRI F , et al. Performance and meat quality traits of slow-growing chickens stimulated in ovo with galactooligosaccharides and exposed to heat stress[J]. Poult Sci, 2022, 101 (8): 101972.
doi: 10.1016/j.psj.2022.101972 |
5 |
LI Q F , ZHOU H , OUYANG J X , et al. Effects of dietary tryptophan supplementation on body temperature, hormone, and cytokine levels in broilers exposed to acute heat stress[J]. Trop Anim Health Prod, 2022, 54 (3): 164.
doi: 10.1007/s11250-022-03161-3 |
6 |
SHI D Y , BAI L , QU Q , et al. Impact of gut microbiota structure in heat-stressed broilers[J]. Poult Sci, 2019, 98 (6): 2405- 2413.
doi: 10.3382/ps/pez026 |
7 | YANG T , LIU B F , WANG Y J , et al. Ellagic acid improves antioxidant capacity and intestinal barrier function of heat-stressed broilers via regulating gut microbiota[J]. Animals (Basel), 2022, 12 (9): 1180. |
8 |
ZHANG L , ZHONG G , GU W J , et al. Dietary supplementation with daidzein and Chinese herbs, independently and combined, improves laying performance, egg quality and plasma hormone levels of post-peak laying hens[J]. Poult Sci, 2021, 100 (6): 101115.
doi: 10.1016/j.psj.2021.101115 |
9 |
SUN K X , WU L G J , WANG S Y , et al. Antitumor effects of Chinese herbal medicine compounds and their nano-formulations on regulating the immune system microenvironment[J]. Front Oncol, 2022, 12, 949332.
doi: 10.3389/fonc.2022.949332 |
10 |
LIU H W , ZHOU D W , TONG J M , et al. Influence of chestnut tannins on welfare, carcass characteristics, meat quality, and lipid oxidation in rabbits under high ambient temperature[J]. Meat Sci, 2012, 90 (1): 164- 169.
doi: 10.1016/j.meatsci.2011.06.019 |
11 |
WANG L , PIAO X L , KIM S W , et al. Effects of Forsythia suspensa extract on growth performance, nutrient digestibility, and antioxidant activities in broiler chickens under high ambient temperature[J]. Poult Sci, 2008, 87 (7): 1287- 1294.
doi: 10.3382/ps.2008-00023 |
12 |
LI H G , ZHAO J S , DENG W , et al. Effects of chlorogenic acid-enriched extract from Eucommia ulmoides Oliver leaf on growth performance and quality and oxidative status of meat in finishing pigs fed diets containing fresh or oxidized corn oil[J]. J Anim Physiol Anim Nutr (Berl), 2020, 104 (4): 1116- 1125.
doi: 10.1111/jpn.13267 |
13 |
CHU H Q , WANG J X , WANG Q , et al. Protective effect of n-Butanol extract from Viola yedoensis on immunological liver injury[J]. Chem Biodivers, 2021, 18 (6): e2001043.
doi: 10.1002/cbdv.202001043 |
14 |
CAO D L , ZHANG X J , XIE S Q , et al. Application of chloroplast genome in the identification of Traditional Chinese Medicine Viola philippica[J]. BMC Genomics, 2022, 23 (1): 540.
doi: 10.1186/s12864-022-08727-x |
15 |
ZENG H R , ZHAO B , ZHANG D , et al. Viola yedoensis Makino formula alleviates DNCB-induced atopic dermatitis by activating JAK2/STAT3 signaling pathway and promoting M2 macrophages polarization[J]. Phytomedicine, 2022, 103, 154228.
doi: 10.1016/j.phymed.2022.154228 |
16 |
WANG C K L , COLGRAVE M L , GUSTAFSON K R , et al. Anti-HIV cyclotides from the Chinese medicinal herb Viola yedoensis[J]. J Nat Prod, 2008, 71 (1): 47- 52.
doi: 10.1021/np070393g |
17 |
WANG X L , LIU X Y , LIU S , et al. Effects of anti-stress agents on the growth performance and immune function in broiler chickens with vaccination-induced stress[J]. Avian Pathol, 2023, 52 (1): 12- 24.
doi: 10.1080/03079457.2022.2114874 |
18 |
ZHANG L Y , LI X , LIU X Y , et al. Purified diet versus whole food diet and the inconsistent results in studies using animal models[J]. Food Funct, 2022, 13 (8): 4286- 4301.
doi: 10.1039/D1FO04311K |
19 |
SIDDIQUI S H , KANG D , PARK J , et al. Chronic heat stress regulates the relation between heat shock protein and immunity in broiler small intestine[J]. Sci Rep, 2020, 10 (1): 18872.
doi: 10.1038/s41598-020-75885-x |
20 |
DANGI S S , GUPTA M , NAGAR V , et al. Impact of short-term heat stress on physiological responses and expression profile of HSPs in Barbari goats[J]. Int J Biometeorol, 2014, 58 (10): 2085- 2093.
doi: 10.1007/s00484-014-0809-5 |
21 |
WANG Y , ZHAO H J , LIU J J , et al. Copper and arsenic-induced oxidative stress and immune imbalance are associated with activation of heat shock proteins in chicken intestines[J]. Int Immunopharmacol,, 2018, 60, 64- 75.
doi: 10.1016/j.intimp.2018.04.038 |
22 | ABDELNOUR S A , AL-GABRI N A , HASHEM N M , et al. Supplementation with proline improves haemato-biochemical and reproductive indicators in male rabbits affected by environmental heat-stress[J]. Animals (Basel), 2021, 11 (2): 373. |
23 |
DENG S L , LIU R , LI C B , et al. Meat quality and flavor compounds of soft-boiled chickens: effect of Chinese yellow-feathered chicken breed and slaughter age[J]. Poult Sci, 2022, 101 (12): 102168.
doi: 10.1016/j.psj.2022.102168 |
24 |
KIM H J , KIM H J , JEON J J , et al. Comparison of the quality characteristics of chicken breast meat from conventional and animal welfare farms under refrigerated storage[J]. Poult Sci, 2020, 99 (3): 1788- 1796.
doi: 10.1016/j.psj.2019.12.009 |
25 |
ULMAN A , KOT M , SKRZYPEK K , et al. Myogenic differentiation of iPS cells shows different efficiency in simultaneous comparison of protocols[J]. Cells, 2021, 10 (7): 1671.
doi: 10.3390/cells10071671 |
26 |
SOSA P , ALCALDE-ESTÉVEZ E , ASENJO-BUENO A , et al. Aging-related hyperphosphatemia impairs myogenic differentiation and enhances fibrosis in skeletal muscle[J]. J Cachexia Sarcopenia Muscle, 2021, 12 (5): 1266- 1279.
doi: 10.1002/jcsm.12750 |
27 |
DUNN A J , ANDO T , BROWN R F , et al. HPA axis activation and neurochemical responses to bacterial translocation from the gastrointestinal tract[J]. Ann N Y Acad Sci, 2003, 992 (1): 21- 29.
doi: 10.1111/j.1749-6632.2003.tb03134.x |
28 |
ARTHUR S , MANOHARAN P , SUNDARAM S , et al. Unique regulation of enterocyte brush border membrane Na-glutamine and Na-alanine Co-transport by peroxynitrite during chronic intestinal inflammation[J]. Int J Mol Sci, 2019, 20 (6): 1504.
doi: 10.3390/ijms20061504 |
29 |
CHEN Z G , ZHOU L H , YUAN Q L , et al. Effect of fumonisin B1 on oxidative stress and gene expression alteration of nutrient transporters in porcine intestinal cells[J]. J Biochem Mol Toxicol, 2021, 35 (4): e22706.
doi: 10.1002/jbt.22706 |
30 |
CHRISTOFIDES A , KONSTANTINIDOU E , JANI C , et al. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses[J]. Metabolism, 2021, 114, 154338.
doi: 10.1016/j.metabol.2020.154338 |
31 |
ZHOU B L , YUAN Y T , ZHANG S S , et al. Intestinal flora and disease mutually shape the regional immune system in the intestinal tract[J]. Front Immunol, 2020, 11, 575.
doi: 10.3389/fimmu.2020.00575 |
32 | DOMINGO J J S , SÁNCHEZ C S . From the intestinal flora to the microbiome[J]. Rev Esp Enferm Dig, 2018, 110 (1): 51- 56. |
33 |
HILLS R D , PONTEFRACT B A , MISHCON H R , et al. Gut microbiome: profound implications for diet and disease[J]. Nutrients, 2019, 11 (7): 1613.
doi: 10.3390/nu11071613 |
34 | MILANI C , DURANTI S , BOTTACINI F , et al. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota[J]. Microbiol Mol Biol Rev, 2017, 81 (4): e00036- 17. |
35 |
ROSTAGNO M H . Effects of heat stress on the gut health of poultry[J]. J Anim Sci, 2020, 98 (4): skaa090.
doi: 10.1093/jas/skaa090 |
36 |
CLAVIJO V , FLÓREZ M J V . The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review[J]. Poult Sci, 2018, 97 (3): 1006- 1021.
doi: 10.3382/ps/pex359 |
37 |
LEY R E , TURNBAUGH P J , KLEIN S , et al. Microbial ecology: human gut microbes associated with obesity[J]. Nature, 2006, 444 (7122): 1022- 1023.
doi: 10.1038/4441022a |
38 |
TURNBAUGH P J , LEY R E , MAHOWALD M A , et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444 (7122): 1027- 1031.
doi: 10.1038/nature05414 |
39 | SPANIER B , ROHM F . Proton coupled oligopeptide transporter 1 (PepT1) function, regulation, and influence on the intestinal homeostasis[J]. Compr Physiol, 2018, 8 (2): 843- 869. |
40 |
BRÖER S . The role of the neutral amino acid transporter B0AT1 (SLC6A19) in Hartnup disorder and protein nutrition[J]. IUBMB Life, 2009, 61 (6): 591- 599.
doi: 10.1002/iub.210 |
41 |
BIANCHI M G , BARDELLI D , CHIU M , et al. Changes in the expression of the glutamate transporter EAAT3/EAAC1 in health and disease[J]. Cell Mol Life Sci, 2014, 71 (11): 2001- 2015.
doi: 10.1007/s00018-013-1484-0 |
42 |
KATEMALA S , MOLEE A , THUMANU K , et al. Meat quality and Raman spectroscopic characterization of Korat hybrid chicken obtained from various rearing periods[J]. Poult Sci, 2021, 100 (2): 1248- 1261.
doi: 10.1016/j.psj.2020.10.027 |
43 | LE BIHAN-DUVAL E , DEBUT M , BERRI C M , et al. Chicken meat quality: genetic variability and relationship with growth and muscle characteristics[J]. BMC Genet, 2008, 9, 53. |
44 |
WANG Y , ZHU Q , ZHAO X L , et al. Association of FATP1 gene polymorphisms with chicken carcass traits in Chinese meat-type quality chicken populations[J]. Mol Biol Rep, 2010, 37 (8): 3683- 3690.
doi: 10.1007/s11033-010-0020-7 |
[1] | 冯铭, 伊旭东, 庞卫军. 肠道微生物通过骨骼肌纤维类型、肌内脂肪含量和骨骼肌代谢调控猪肉质研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2304-2312. |
[2] | 冯肖艺, 张培培, 张航, 郝海生, 杜卫华, 朱化彬, 崔凯, 赵学明. 热应激对牛卵子及其胚胎表观遗传修饰与发育能力的影响[J]. 畜牧兽医学报, 2024, 55(6): 2460-2473. |
[3] | 张航, 张培培, 杨柏高, 冯肖艺, 牛一凡, 余洲, 曹建华, 万鹏程, 赵学明. IGF1、CoQ10、MT联合添加缓解热应激对牛IVF囊胚的影响[J]. 畜牧兽医学报, 2024, 55(6): 2474-2485. |
[4] | 罗志斌, 欧慧敏, 李建中, 谭支良, 焦金真. 添加过瘤胃氨基酸低蛋白质饲粮对呼伦贝尔羊生长性能、养分表观消化率及肉品质的影响[J]. 畜牧兽医学报, 2024, 55(6): 2498-2509. |
[5] | 李亚霖, 甄士博, 曹林, 孙逢雪, 王利华. 植物乳杆菌及其后生元对育成期母貂生长性能、免疫功能及肠道健康的影响[J]. 畜牧兽医学报, 2024, 55(6): 2530-2539. |
[6] | 李明, 崔洪伟, 高婕, 安乐乐, 李松励, 饶正华. 白羽肉鸡小肠内容物中致病性大肠杆菌的鉴定及基因组分析[J]. 畜牧兽医学报, 2024, 55(6): 2692-2700. |
[7] | 韩福珍, 蔡李萌, 李卓然, 王雪莹, 解伟纯, 匡虹迪, 李佳璇, 崔文, 姜艳平, 李一经, 单智夫, 唐丽杰. 肠道菌群介导次级胆汁酸及其受体调节肠黏膜免疫机制的研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1904-1913. |
[8] | 刘佳惠, 吴开开, 王磊, 张康, 韩松伟, 陈富斌, 徐国伟, 郭志廷, 古雪艳, 张景艳, 李建喜. 黄芪多糖、皂苷及益生菌复合物对感染大肠杆菌肉鸡肠道的保护作用[J]. 畜牧兽医学报, 2024, 55(5): 2241-2252. |
[9] | 刘思弟, 马贲, 郑言, 邱云桥, 姚泽龙, 曹中赞, 栾新红. 肠道菌群调控动物肠道黏膜免疫和炎症的研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1423-1431. |
[10] | 雷艳茹, 胡晓玉, 许春红, 张晨曦, 杜文苹, 王阳光, 李东华, 孙桂荣, 李文婷, 康相涛. 5个贵妃鸡配套系生长发育规律、屠宰性能和肉品质比较分析[J]. 畜牧兽医学报, 2024, 55(4): 1521-1535. |
[11] | 王潇, 张昊, 栾庆江, 李慧, 杨鼎, 王婷月, 田菁, 赵濛, 陈陆, 田如刚. 冷热应激对肉牛生理指标及基因表达影响的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 894-904. |
[12] | 李铁, 齐梦迪, 张克英, 王建萍, 白世平, 曾秋凤, 彭焕伟, 玄月, 吕莉, 丁雪梅. 育雏育成期饲粮添加益生菌对蛋鸡生长性能、血清指标、肠道健康及后续生产性能的影响[J]. 畜牧兽医学报, 2024, 55(3): 1062-1076. |
[13] | 左子珍, 王海波, 柴志欣, 符健慧, 张翔飞, 罗晓林, 钟金城. 过瘤胃蛋氨酸对牦牛半腱肌肉品质、挥发性风味物质及脂肪酸组成的影响[J]. 畜牧兽医学报, 2024, 55(3): 1102-1114. |
[14] | 梁灿新, 郑小雪, 舒雪利, 周婉怡, 廖明, 曹伟胜. 与鸡内皮血管瘤病例相关的禽白血病病毒K亚群分离及其gp85基因演化分析[J]. 畜牧兽医学报, 2024, 55(3): 1127-1136. |
[15] | 霍元楠, 邱美佳, 张姣姣, 杨炜蓉, 王鲜忠. 精氨酸及其代谢物抑制热应激诱导仔猪支持细胞凋亡的机制[J]. 畜牧兽医学报, 2024, 55(2): 587-597. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||