畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (8): 3621-3630.doi: 10.11843/j.issn.0366-6964.2025.08.006
毛倩倩1,2(), 张岩1,2,*(
), 周祥莹2, 单翠燕2, 郭超群2, 路庭欢2, 王丽2
收稿日期:
2024-12-31
出版日期:
2025-08-23
发布日期:
2025-08-28
通讯作者:
张岩
E-mail:772074848@qq.com;zhangyan@vlandgroup.com
作者简介:
毛倩倩(1988-),女,山东青岛人,硕士,主要从事动物营养和兽药制剂研究,E-mail: 772074848@qq.com
基金资助:
MAO Qianqian1,2(), ZHANG Yan1,2,*(
), ZHOU Xiangying2, SHAN Cuiyan2, GUO Chaoqun2, LU Tinghuan2, WANG Li2
Received:
2024-12-31
Online:
2025-08-23
Published:
2025-08-28
Contact:
ZHANG Yan
E-mail:772074848@qq.com;zhangyan@vlandgroup.com
摘要:
畜禽寄生虫病是全球范围内对农业和公共卫生构成重大威胁的问题之一。这些疾病不仅导致家畜生产性能下降,还可能通过食物链传播给人类,引发严重的公共卫生问题。因此,畜禽寄生虫病的精准诊断显得尤为重要,能够及时识别和控制疾病,减少经济损失,并保护人类健康。然而,传统的诊断方法往往存在灵敏度和特异性不足的问题,限制了其在早期诊断和疾病监测中的应用。近年来,纳米技术和CRISPR基因编辑技术的发展为畜禽寄生虫病的精准诊断提供了新的工具和方法。纳米技术,特别是纳米材料的高比表面积和独特的光学、电学性质,使其在生物传感和分子诊断中展现出巨大潜力。CRISPR基因诊断技术以其精确性和高效性,已经成为基因功能研究和疾病诊断的重要工具。将这两种技术结合起来,可以开发出更加灵敏、特异、快速的诊断方法,以应对畜禽寄生虫病的挑战。本综述将探讨纳米技术和CRISPR基因诊断技术在畜禽寄生虫病精准诊断中的应用,通过深入研究纳米技术和CRISPR基因诊断技术的应用前景,为畜禽寄生虫病的早期诊断、疫苗研发以及有效防治策略提供强有力的支持,为保障动物健康和农业生产力的提升贡献新的科学力量。
中图分类号:
毛倩倩, 张岩, 周祥莹, 单翠燕, 郭超群, 路庭欢, 王丽. 纳米技术与CRISPR基因诊断技术在畜禽寄生虫病精准诊断中的应用[J]. 畜牧兽医学报, 2025, 56(8): 3621-3630.
MAO Qianqian, ZHANG Yan, ZHOU Xiangying, SHAN Cuiyan, GUO Chaoqun, LU Tinghuan, WANG Li. Application of Nanotechnology and CRISPR Gene Diagnostics in Precision Detection of Livestock Parasitic Diseases[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3621-3630.
表 1
主要传统检测方法优缺点"
诊断方法 Diagnostic method | 优势 Advantage | 缺点 Disadvantage | 参考文献 Reference |
显微镜检测 Microscopic inspection | 快速、直观; 成本相对较低; 简单易行 | 对操作者经验和技能要求高; 低浓度或非活跃阶段检出率低; 易发生鉴别错误; 无法提供分子层面信息 | [ |
免疫学方法 Immunological methods | 高通量、高灵敏度、低成本; 适用于早期或亚临床感染检测 | 依赖宿主免疫反应,受多种因素影响; 需要较长窗口期,可能出现假阴性; 需要设备支持,存在交叉反应可能性 | [ |
分子生物学方法 Molecular biology methods | 高灵敏度和特异性; 直接检测遗传物质; 早期发现感染; 适用于混合感染 | 操作复杂,设备要求高,成本昂贵; 受样本提取质量、试剂选择和引物设计影响; 无法直接提供寄生虫数量或分布信息 | [ |
1 | LANE J , KELLY T , BIRD B , et al. A one health approach to reducing livestock disease prevalence in developing countries: advances, challenges, and prospects[J]. Annu Rev Anim Biosci, 2025, 2 (13): 277- 302. |
2 |
VEROCAI G G , CHAUDHRY U N , LEJEUNE M . Diagnostic methods for detecting internal parasites of livestock[J]. Vet Clin Food Anim, 2020, 36 (1): 125- 143.
doi: 10.1016/j.cvfa.2019.12.003 |
3 |
ZHANG C , JIANG H , JIANG H , et al. Deep learning for microscopic examination of protozoan parasites[J]. Comput Struct Biotechnol J, 2022, 20, 1036- 1043.
doi: 10.1016/j.csbj.2022.02.005 |
4 |
陈秀琴, 林甦, 张世忠, 等. 基于CRISPR/Cas系统的生物传感器在动物疫病诊断中的应用[J]. 畜牧兽医学报, 2024, 55 (7): 2859- 2876.
doi: 10.11843/j.issn.0366-6964.2024.07.008 |
CHEN X Q , LIN S , ZHANG S H , et al. Application of CRISPR/Cas-based biosensors for animal diseases diagnosis[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (7): 2859- 2876.
doi: 10.11843/j.issn.0366-6964.2024.07.008 |
|
5 |
GABALLAH M , BARAKAT A , AHMED N , et al. Histopathological and biochemical assessment of the therapeutic effect of gold nanoparticles on experimental chronic toxoplasmosis[J]. Parasitol United J, 2021, 14 (2): 171- 177.
doi: 10.21608/puj.2021.73358.1117 |
6 | BASHIR M , KHAN N , MUSHTAQ N , et al. Nanotechnology in parasite control: new therapeutic horizons[J]. Complement Altern Med: Nanotechnol-Ⅱ, 2024, 8, 208-- 217. |
7 |
HESHMATI F , SANGAR S G , AMOOZADEHSAMAKOOSH A , et al. The role of metallic nanoparticles in the prevention and treatment of parasitic diseases in poultry[J]. Worlds Poult Sci J, 2023, 2 (3): 13- 19.
doi: 10.58803/jwps.v2i3.15 |
8 |
MUKHERJEE S , SARKAR S , SARKAR S , et al. CRISPR-Cas based nano-sensors in water pathogen detection[J]. Int J Res Adv Electron Eng, 2024, 5 (1): 7- 10.
doi: 10.22271/27084558.2024.v5.i1a.32 |
9 | SHAMBHU S , KOUNDAL D , DAS P . Deep learning-based computer assisted detection techniques for malaria parasite using blood smear images[J]. Int J Adv Technol Eng Exp, 2023, 10 (105): 990. |
10 |
SIAGIAN F E . The use of immersion oil in parasitology light microscopic examination[J]. Int J Pathogen Res, 2024, 13 (2): 1- 8.
doi: 10.9734/ijpr/2024/v13i2274 |
11 | ASHFRAF M , MUSTAFA B E , WAHAAB A , et al. Conventional and molecular diagnosis of parasites[M]. Parasitism and Parasitic Control in Animals: Strategies for the Developing World. GB: CABI, 2023: 56- 72. |
12 |
CHOI M H . Serological diagnosis of tissue-invading parasites in Korea[J]. Ann Clin Microbiol, 2024, 27 (2): 81- 91.
doi: 10.5145/ACM.2024.27.2.5 |
13 |
TOALEB N I , ABOELSOUED D , ABDEL MEGEED K N , et al. A novel designed sandwich ELISA for the detection of Echinococcus granulosus antigen in camels for diagnosis of cystic echinococcosis[J]. Trop Med Infect Dis, 2023, 8 (8): 400.
doi: 10.3390/tropicalmed8080400 |
14 |
AFTAB A , RAINA O K , MAXTON A , et al. Advances in diagnostic approaches to fasciola infection in animals and humans: an overviews[J]. J Helminthol, 2024, 98, e12.
doi: 10.1017/S0022149X23000950 |
15 |
NUR HAFIZAH S , NOOR IZANI N J , AHMAD NAJIB M , et al. Immunodiagnosis of fascioliasis in ruminants by ELISA method: A mini-review[J]. Malays J Med Sci, 2023, 30 (4): 25- 32.
doi: 10.21315/mjms2023.30.4.3 |
16 |
BAKHSHIPOUR F , ZIBAEI M , ROKNI M B , et al. Comparative evaluation of real-time PCR and ELISA for the detection of human fascioliasis[J]. Sci Rep, 2024, 14 (1): 3865.
doi: 10.1038/s41598-024-54602-y |
17 |
TSOKANA C N , SYMEONIDOU I , SIOUTAS G , et al. Current applications of digital PCR in veterinary parasitology: an overview[J]. Parasitologia, 2023, 3 (3): 269- 283.
doi: 10.3390/parasitologia3030028 |
18 |
LEI S , CHEN S , ZHONG Q . Digital PCR for accurate quantification of pathogens: Principles, applications, challenges and future prospects[J]. Int J Biol Macromol, 2021, 184, 750- 759.
doi: 10.1016/j.ijbiomac.2021.06.132 |
19 |
杨富升, 古小彬. 近十年PCR技术在寄生虫病诊断中的应用[J]. 畜牧兽医学报, 2023, 54 (8): 3183- 3194.
doi: 10.11843/j.issn.0366-6964.2023.08.006 |
YANG F S , GU X B . A review on applications of PCR technology in the diagnosis of parasitic diseases in the past 10 years[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (8): 3183- 3194.
doi: 10.11843/j.issn.0366-6964.2023.08.006 |
|
20 | 高扬, 董泽丰, 雅雪蓉, 等. 病原体多重PCR检测技术研究进展[J]. 江苏预防医学, 2024, 35 (2): 243- 247. |
GAO Y , DONG Z F , YA X R , et al. Research progress on multiplex PCR detection technology for pathogens[J]. Jiangsu Journal of Preventive Medicine, 2024, 35 (2): 243- 247. | |
21 |
AHMAD A , IMRAN M , AHSAN H . Biomarkers as biomedical bioindicators: approaches and techniques for the detection, analysis, and validation of novel biomarkers of diseases[J]. Pharmaceutics, 2023, 15, 1630.
doi: 10.3390/pharmaceutics15061630 |
22 | CERBU C , WHITE J C , SABLIOV C M . Nanotechnology in livestock: improving animal production and health[M]. Nano-Enabled Sustainable and Precision Agriculture. Academic Press, 2023: 181- 213. |
23 | RATHER S A , MUSTAFA R A , ASHRAF M V , et al. Implications of nano-biosensors in the early detection of neuroparasitic diseases[M]. Theranostic Applications of Nanotechnology in Neurological Disorders. Singapore: Springer Nature Singapore, 2024: 43- 83. |
24 | ACHI F , ATTAR AM , LAHCEN A A . Electrochemical nanobiosensors for the detection of cancer biomarkers in real samples: Trends and challenges[J]. Trends Anal Chem, 2023, 170, 117423. |
25 |
TIWARI R , GUPTA R P , SINGH V K , et al. Nanotechnology-based strategies in parasitic disease management: from prevention to diagnosis and treatment[J]. ACS Omega, 2023, 8 (45): 42014- 42027.
doi: 10.1021/acsomega.3c04587 |
26 |
HAJJAFARI A , SADR S , SANTUCCIU C , et al. Advances in detecting cystic echinococcosis in intermediate hosts and new diagnostic tools: a literature review[J]. Vet Sci, 2024, 11 (6): 227.
doi: 10.3390/vetsci11060227 |
27 |
KRÓL G , FORTUNKA K , MAJCHRZAK M , et al. Metallic nanoparticles and core-shell nanosystems in the treatment, diagnosis, and prevention of parasitic diseases[J]. Pathogens, 2023, 12 (6): 838.
doi: 10.3390/pathogens12060838 |
28 |
ARCAS A S , JARAMILLO L , COSTA N S , et al. Localized surface plasmon resonance-based biosensor on gold nanoparticles for Taenia solium detection[J]. Appl Opt, 2021, 60, 8137- 8144.
doi: 10.1364/AO.432990 |
29 |
SALIMI M , KESHAVARZ-VALIAN H , MOHEBALI M , et al. Electrochemical immunosensor based on carbon nanofibers and gold nanoparticles for detecting anti-Toxoplasma gondii IgG antibodies[J]. Microchim Acta, 2023, 190 (9): 367.
doi: 10.1007/s00604-023-05928-3 |
30 | ŞANLI S . Design of a novel electrochemical immunosensor for Toxoplasma gondii detection based on gold nanoparticle/chitosan decorated screen printed electrode[J]. J Sci Technol, 2023, 16 (3): 840- 853. |
31 |
ABD ELGHANI H M , SABRY N M , ABDELSALAM I M , et al. Performance of quantum dot nanobeads-based immunoassay in diagnosis of toxoplasmosis[J]. Parasitologists United J, 2021, 14 (2): 204- 213.
doi: 10.21608/puj.2021.83445.1123 |
32 | LI X , WANG Q , LI X , et al. Carbon nanospheres dual-spectral-overlapped fluorescence quenching lateral flow immunoassay for rapid diagnosis of toxoplasmosis in humans[J]. J Pharm Biomed Anal, 2024, 24, 115986. |
33 |
SAFARPOUR H , MAJDI H , MASJEDI A , et al. Development of optical biosensor using protein A-conjugated chitosan-gold nanoparticles for diagnosis of cystic echinococcosis[J]. Biosensors, 2021, 11, 134.
doi: 10.3390/bios11050134 |
34 |
SOUSA S , CASTRO A , CORREIA DA COSTA J M , et al. Biosensor based immunoassay: a new approach for serotyping of Toxoplasma gondii[J]. Nanomaterials, 2021, 11 (8): 2065.
doi: 10.3390/nano11082065 |
35 |
TABATABAEI M S , ISLAM R , AHMED M . Applications of gold nanoparticles in ELISA, PCR, and immuno-PCR assays: A review[J]. Anal Chim Acta, 2021, 1143, 250- 266.
doi: 10.1016/j.aca.2020.08.030 |
36 |
ALY N S , KIM H S , MAREI Y M , et al. Diagnosis of toxoplasmosis using surface antigen grade 1 detection by ELISA, nano-gold ELISA, and PCR in pregnant women[J]. Int J Nanomed, 2023, 18, 1335- 1345.
doi: 10.2147/IJN.S401876 |
37 | KHODADADI A , MADANI R , ATYABI N . Development of nano-ELISA method for serological diagnosis of toxoplasmosis in mice[J]. Arch Razi Inst, 2020, 75 (4): 419. |
38 |
KAMEL H H , ELLEBOUDY N A , MOHAMMAD OS , et al. Diagnosis of experimental trichinosis by nano-based ELISA and nano-based latex agglutination test compared with traditional sandwich ELISA[J]. QJM: An Int J Med, 2024, 117 (Supplement_1): hcae070.434.
doi: 10.1093/qjmed/hcae070.434 |
39 |
YIN Y L , WANG Y , LAI P , et al. Establishment and preliminary application of nanoparticle-assisted PCR assay for detection of Cryptosporidium spp[J]. Parasitol Res, 2021, 120, 1837- 1844.
doi: 10.1007/s00436-021-07101-2 |
40 |
YAO Q , YANG X , WANG Y , et al. Development and preliminary evaluation of a nanoparticle-assisted PCR assay for the detection of Cryptosporidium parvum in calves[J]. Animals, 2022, 12 (15): 1953.
doi: 10.3390/ani12151953 |
41 |
KIM M J , PARK S J , PARK H . Trend in serological and molecular diagnostic methods for Toxoplasma gondii infection[J]. Eur J Med Res, 2024, 29, 520.
doi: 10.1186/s40001-024-02055-4 |
42 |
IPPODRINO R , RICCI F , TREGIA I , et al. Enhancement of CRISPR/Cas12a trans-cleavage activity using hairpin DNA reporters[J]. Nucleic Acids Res, 2022, 50, 8377- 8391.
doi: 10.1093/nar/gkac578 |
43 |
包斌武, 邹惠影, 李俊良, 等. 基因编辑技术的研究进展[J]. 畜牧兽医学报, 2025, 56 (1): 1- 14.
doi: 10.11843/j.issn.0366-6964.2025.01.001 |
BAO B W , ZOU H Y , LI J L , et al. Research progress in gene editing technology[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56 (1): 1- 14.
doi: 10.11843/j.issn.0366-6964.2025.01.001 |
|
44 |
KAMINSKI M M , ABUDAYYEH O O , GOOTENBERG J S , et al. CRISPR-based diagnostics[J]. Nat B iomed Eng, 2021, 5, 643- 656.
doi: 10.1038/s41551-021-00760-7 |
45 |
LI X , DANG Z , TANG W , et al. Detection of parasites in the field: the ever-innovating CRISPR/Cas12a[J]. Biosensors, 2024, 14 (3): 145.
doi: 10.3390/bios14030145 |
46 |
QIU M , ZHOU X M , LIU L . Improved strategies for CRISPR-Cas12-based nucleic acids detection[J]. J Anal Test, 2022, 6, 44- 52.
doi: 10.1007/s41664-022-00212-4 |
47 |
ZHAO X , LI S , LIU G , et al. A versatile biosensing platform coupling CRISPR-Cas12a and aptamers for detection of diverse analytes[J]. Sci Bull, 2021, 66 (1): 69- 77.
doi: 10.1016/j.scib.2020.09.004 |
48 |
KHARISMASARI C Y , IRKHAM , ZEIN M I H L , et al. CRISPR/Cas12-based electrochemical biosensors for clinical diagnostic and food monitoring[J]. Bioelectrochemistry, 2024, 155, 108600.
doi: 10.1016/j.bioelechem.2023.108600 |
49 |
MA Q N , WANG M , ZHENG L B , et al. RRAA-Cas12a-Tg: a nucleic acid detection system for Toxoplasma gondii based on CRISPR-Cas12a combined with recombinase-aided amplification (RAA)[J]. Microorganisms, 2021, 9 (8): 1644.
doi: 10.3390/microorganisms9081644 |
50 |
LEI R , LI L , WU P , et al. RPA/CRISPR/Cas12a-based on-site and rapid nucleic acid detection of Toxoplasma gondii in the environment[J]. ACS Synth Biol, 2022, 11, 1772- 1781.
doi: 10.1021/acssynbio.1c00620 |
51 |
WANG X , CHENG M , YANG S , et al. CRISPR/Cas12a combined with RPA for detection of T. gondii in mouse whole blood[J]. Parasites Vectors, 2023, 16, 256.
doi: 10.1186/s13071-023-05868-0 |
52 |
HUANG F , LI X , ZHOU Y , et al. Optimization of CRISPR/Cas12a detection assay and its application in the detection of Echinococcus granulosus[J]. Vet Parasitol, 2024, 331, 110276.
doi: 10.1016/j.vetpar.2024.110276 |
53 |
CHERKAOUI D , MESQUITA S G , HUANG D , et al. CRISPR-assisted test for Schistosoma haematobium[J]. Sci Rep, 2023, 13, 4990.
doi: 10.1038/s41598-023-31238-y |
54 |
WANG Y , YU F , FU Y , et al. End-point diagnostics of Giardia duodenalis assemblages A and B by combining RPA with CRISPR/Cas12a from human fecal samples[J]. Parasite Vectors, 2024, 17 (1): 463.
doi: 10.1186/s13071-024-06559-0 |
55 |
SUTIPATANASOMBOON A , WONGSANTICHON J , SAKDEE S , et al. RPA-CRISPR/Cas12a assay for the diagnosis of bovine Anaplasma marginale infection[J]. Sci Rep, 2024, 14, 7820.
doi: 10.1038/s41598-024-58169-6 |
56 |
YANG K , BI M , MO X . CRISPR/Cas12a, combined with recombinase polymerase amplification (RPA) reaction for visual detection of Leishmania species[J]. Microchem J, 2024, 207, 112283.
doi: 10.1016/j.microc.2024.112283 |
57 |
HUANG T , LI L , LI J , et al. Rapid, sensitive, and visual detection of Clonorchis sinensis with an RPA-CRISPR/Cas12a-based dual readout portable platform[J]. Int J Biol Macromol, 2023, 249, 125967.
doi: 10.1016/j.ijbiomac.2023.125967 |
58 |
WANG L , LI X , LI L , et al. Establishment of an ultrasensitive and visual detection platform for Neospora caninum based on the RPA-CRISPR/Cas12a system[J]. Talanta, 2024, 269, 125413.
doi: 10.1016/j.talanta.2023.125413 |
59 |
WANG Y , YU F , ZHANG K , et al. End-point RPA-CRISPR/Cas12a-based detection of Enterocyto-zoon bieneusi nucleic acid: rapid, sensitive and specific[J]. BMC Vet Res, 2024, 20, 540.
doi: 10.1186/s12917-024-04391-3 |
60 |
ZHAO L , WANG H , CHEN X , et al. Agarose hydrogel-boosted one-tube RPA-CRISPR/Cas12a assay for robust point-of-care detection of zoonotic nematode Anisakis[J]. J Agric Food Chem, 2024, 72 (14): 8257- 8268.
doi: 10.1021/acs.jafc.4c00204 |
61 | TAHERI T , DAVARPANAH E , SAMIMI-RAD K , et al. PUF proteins as critical RNA-binding proteins in TriTryp parasites: a review article[J]. Iran J Parasitol, 2024, 19 (2): 192- 206. |
62 |
RAJAN A , SHRIVASTAVA S , KUMAR A , et al. CRISPR-Cas system: from diagnostic tool to potential antiviral treatment[J]. Appl Microbiol Biotechnol, 2022, 106, 5863- 5877.
doi: 10.1007/s00253-022-12135-2 |
63 | MACGREGOR S R . Development of CRISPR/Cas13a-based assays for the diagnosis of Schistosomiasis[J]. EBioMedicine, 2022, 94, 104730. |
64 |
YANG Z , WANG J , QI Y , et al. A novel detection method based on MIRA-CRISPR/Cas13a-LFD targeting the repeated DNA sequence of Trichomonas vaginalis[J]. Parasites Vectors, 2024, 17 (1): 14.
doi: 10.1186/s13071-023-06106-3 |
65 |
WU Y X , SADIQ S , JIAO X H , et al. CRISPR/Cas13a-mediated visual detection: a rapid and robust method for early detection of Nosema bombycis in silkworms[J]. Insect Biochem Mol Biol, 2024, 175, 104203.
doi: 10.1016/j.ibmb.2024.104203 |
66 |
CUNNINGHAM C H , HENNELLY C M , LIN J T , et al. A novel CRISPR-based malaria diagnostic capable of Plasmodium detection, species differentiation, and drug-resistance genotyping[J]. EBioMedicine, 2021, 68, 103415.
doi: 10.1016/j.ebiom.2021.103415 |
67 |
ZHAO J , LI Y , XUE Q , et al. A novel rapid visual detection assay for Toxoplasma gondii combining recombinase-aided amplification and lateral flow dipstick coupled with CRISPR-Cas13a fluorescence (RAA-Cas13a-LFD)[J]. Parasite, 2022, 29, 21.
doi: 10.1051/parasite/2022021 |
68 |
HEJABI F , ABBASZADEH M S , TAJI S , et al. Nanocarriers: a novel strategy for the delivery of CRISPR/Cas systems[J]. Front Chem, 2022, 10, 957572.
doi: 10.3389/fchem.2022.957572 |
69 |
PHAN Q A , TRUONG L B , MEDINA-CRUZ D , et al. CRISPR/Cas-powered nanobiosensors for diagnostics[J]. Biosens Bioelectron, 2022, 197, 113732.
doi: 10.1016/j.bios.2021.113732 |
70 |
LEE R A , PUIG H , NGUYEN P Q , et al. Ultrasensitive CRISPR-based diagnostic for field-applicable detection of Plasmodium species in symptomatic and asymptomatic malaria[J]. Proc Natl Acad Sci, 2020, 117, 25722- 25731.
doi: 10.1073/pnas.2010196117 |
71 |
CHEN X , LIU X , YU Y , et al. FRET with MoS2 nanosheets integrated CRISPR/Cas12a sensors for robust and visual food-borne parasites detection[J]. Sensors Actuators B Chem, 2023, 395, 134493.
doi: 10.1016/j.snb.2023.134493 |
72 |
RAUCH J N , VALOIS E , SOLLEY S C , et al. A scalable, easy-to-deploy protocol for Cas13-based detection of SARS-CoV-2 genetic material[J]. J Clin Microbiol, 2021, 59, e02402-20.
doi: 10.1128/JCM.02402-20 |
73 |
ARIZTI SANZ J , BRADLEY A , ZHANG Y B , et al. Simplified Cas13-based assays for the fast identification of SARS-CoV-2 and its variants[J]. Nat Biomed Eng, 2022, 6, 932- 943.
doi: 10.1038/s41551-022-00889-z |
74 |
BROGAN D J , CHAVERRA RODRIGUEZ D , LIN C P , et al. Development of a rapid and sensitive CasRx-based diagnostic assay for SARS-CoV-2[J]. ACS Sens, 2021, 6, 3957- 3966.
doi: 10.1021/acssensors.1c01088 |
75 |
GATTANI A , MANDAL S , AGRAWAL A , et al. CRISPR-based electrochemical biosensors for animal health: Recent advances[J]. Prog Biophys Mol Biol, 2024, 193, 7- 18.
doi: 10.1016/j.pbiomolbio.2024.09.001 |
76 |
LIU S , XU L , HUANG Z , et al. Recent advances of nanoparticles-assisted CRISPR/Cas biosensors[J]. Microchem J, 2024, 199, 109930.
doi: 10.1016/j.microc.2024.109930 |
77 |
ARSHAD F , YEE BJ , TING K P , et al. Nanomaterials as signal amplifiers in CRISPR/Cas biosensors: a path toward multiplex point-of-care diagnostics[J]. Microchem J, 2024, 207, 111826.
doi: 10.1016/j.microc.2024.111826 |
[1] | 迟顺顺, 吴丹, 王楠, 王婉洁, 聂雨欣, 牟玉莲, 刘志国, 朱振东, 李奎. 基于RPA-CRISPR/Cas12a的MSTN基因编辑猪检测方法的建立及应用[J]. 畜牧兽医学报, 2025, 56(8): 3734-3748. |
[2] | 张晨淼, 陈博文, 蒋林树, 童津津. 纳米技术改良黄酮类化合物在动物健康养殖中的应用潜力[J]. 畜牧兽医学报, 2025, 56(7): 3107-3115. |
[3] | 耿小玲, 李瑞芳, 徐卫兵, 杜晶莹, 张曼玉, 孙卿, 蒋蔚, 米荣升, 陈兆国, 王权. 弓形虫TR与ROP5双基因缺失株的构建及其生物学功能研究[J]. 畜牧兽医学报, 2025, 56(7): 3408-3422. |
[4] | 高林娜, 蒋影影, 王悦, 史倩倩, 安振江, 王慧利, 沈阳阳, 陈坤琳, 张乐颖. 基于CRISPR/Cas9技术的牛乳腺上皮细胞全基因组敲除文库的构建[J]. 畜牧兽医学报, 2025, 56(6): 2711-2723. |
[5] | 李晓晗, 李桂萍, 霍彩云, 张启龙, 孙英健, 孙惠玲. Ⅱ类CRISPR/Cas系统及其在细菌合成生物学中的应用[J]. 畜牧兽医学报, 2025, 56(4): 1608-1620. |
[6] | 马秀玲, 张欣如, 陈莹, 梁红艳, 古丽米热·阿布都热依木, 汪立芹, 林嘉鹏, 李伟健, 王旭光, 吴阳升. 阿勒泰羊胚胎PDGFD基因编辑研究[J]. 畜牧兽医学报, 2025, 56(4): 1700-1711. |
[7] | 解雅茹, 金昊延, 孔辰, 蔡蓓, 张令锴. CRISPR/Cas9系统在家畜生殖细胞中的研究进展[J]. 畜牧兽医学报, 2025, 56(2): 479-491. |
[8] | 陈秀琴, 林甦, 张世忠, 郑敏, 黄梅清. 基于CRISPR/Cas系统的生物传感器在动物疫病诊断中的应用[J]. 畜牧兽医学报, 2024, 55(7): 2859-2876. |
[9] | 邱梅玉, 张雪梅, 张宁, 刘明军. 引导编辑技术的研究进展及应用[J]. 畜牧兽医学报, 2024, 55(4): 1345-1355. |
[10] | 王家丽, 杨帆, 邵文华, 黄梦瑶, 曹伟军, 蒲秀瑛, 张伟, 郑海学. Tollip敲除猪肾细胞系的构建[J]. 畜牧兽医学报, 2024, 55(4): 1810-1818. |
[11] | 张多, 滕蔓, 张卓, 刘金玲, 郑鹿平, 各思雨, 韩放, 罗琴, 柴书军, 赵东, 余祖华, 罗俊. 一株马立克病病毒特超强变异株meq基因编辑缺失候选疫苗毒株的构建与鉴定[J]. 畜牧兽医学报, 2024, 55(12): 5672-5683. |
[12] | 周蜓蜓, 李立, 吴燕涛, 逯文颖, 付宝权, 殷宏, 贾万忠, 闫鸿斌. 单细胞转录组学技术及其在寄生虫研究中的应用进展[J]. 畜牧兽医学报, 2024, 55(10): 4290-4301. |
[13] | 丁修虎, 林志平, 赵芳, 陈坤琳, 仲跻峰, 张燕, 高运东, 李惠侠, 王慧利, 张建丽, 丁强. 利用CRISPR/Cas9技术制备BLG基因敲除牛乳腺上皮细胞系[J]. 畜牧兽医学报, 2024, 55(10): 4475-4488. |
[14] | 张晨俭, 李隐侠, 丁强, 刘伟佳, 王慧利, 何南, 吴家顺, 曹少先. CRISPR/Cas9技术高效制备山羊SOCS2基因编辑胚胎[J]. 畜牧兽医学报, 2024, 55(1): 129-141. |
[15] | 刘华, 殷冬冬, 邵颖, 宋祥军, 王振宇, 潘孝成, 涂健, 何长生, 朱良强, 祁克宗. 猪流行性腹泻病毒RAA-CRISPR/Cas13a检测方法的建立与初步应用[J]. 畜牧兽医学报, 2023, 54(9): 3991-3997. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||