畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (7): 3107-3115.doi: 10.11843/j.issn.0366-6964.2025.07.007
收稿日期:
2024-07-25
出版日期:
2025-07-23
发布日期:
2025-07-25
通讯作者:
童津津
E-mail:1787430846@qq.com;tongjinjin0451@163.com
作者简介:
张晨淼(2000-),女,北京人,硕士生,主要从事动物营养与免疫研究,E-mail: 1787430846@qq.com
基金资助:
ZHANG Chenmiao(), CHEN Bowen, JIANG Linshu, TONG Jinjin*(
)
Received:
2024-07-25
Online:
2025-07-23
Published:
2025-07-25
Contact:
TONG Jinjin
E-mail:1787430846@qq.com;tongjinjin0451@163.com
摘要:
黄酮类化合物以C6-C3-C6为基本骨架,通过三个碳原子将两个苯环连接组成的化合物,可分成许多不同的亚类,如黄酮类、花青素等。大多都具有抑菌、抗炎、抗氧化和增强机体免疫力等生物学作用。但由于黄酮类化合物的化学构成等原因,其溶解度较低,稳定性和渗透性较差,生物利用度低。随着纳米技术的更新和成熟,以天然大分子物质为基底制得的纳米颗粒,对黄酮类化合物的溶解性、生物学功能等均有显著的改善作用。本文对黄酮类纳米颗粒进行了整合和归纳,并阐明了其作用机制,旨在为开发和利用黄酮类纳米颗粒在动物生产中的应用提供参考。
中图分类号:
张晨淼, 陈博文, 蒋林树, 童津津. 纳米技术改良黄酮类化合物在动物健康养殖中的应用潜力[J]. 畜牧兽医学报, 2025, 56(7): 3107-3115.
ZHANG Chenmiao, CHEN Bowen, JIANG Linshu, TONG Jinjin. Potential Applications of Nanotechnology-Improved Flavonoids in Animal Health Management[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3107-3115.
表 1
负载黄酮类化合物纳米颗粒表征及应用效果对比"
品种 Item | 纳米颗粒 NPs | 黄酮类 Flavonoid | 粒径/nm Size | 形状 Shape | Zeta电位/mV Zeta potential | 应用效果 Application effect | 文献 Reference |
聚合物纳米颗粒 Polymer nanoparticles | 钴基纳米聚合物 | 姜黄素 | 150 | 菱形12面体 | — | 姜黄素抗氧化功效显著提高 | [ |
甲氧基聚己二醇聚己内酯 | 姜黄素 | 111.16±3.26 | — | 5.67±5.26 | 纳米颗粒的姜黄素聚合物使微生物数量明显下降 | [ | |
聚乳酸-羟基乙酸共聚物 | 橙皮苷 | — | — | — | 抗氧化和抗菌方面发挥作用 | [ | |
多糖纳米颗粒 Polysaccharide nanoparticles | 壳聚糖 | 槲皮素 | 327.9 | — | >30 | 有效改善感染组织周围的炎性症状 | [ |
壳聚糖 | 姜黄素 | 160±10 | — | 7±2 | 增强对葡萄球菌、大肠杆菌、枯草芽孢杆菌的生长抑制 | [ | |
果胶 | 柑桔皮提取物 | 271.5±5.3 | 球形 | — | 释放特性得到加强,氧化活性得到提升 | [ | |
果胶 | 茶树花黄酮 | 238±4.55 | 球形或椭球形 | -27.38 | 更好的自由基清除率与储藏稳定性 | [ | |
藜麦淀粉 | 芦丁 | 107 | 球形 | -18.0 | 有效控制了芦丁的释放率,提高体外的生物利用率和抗氧化活性 | [ | |
玉米淀粉 | 芦丁 | 222 | 球形 | -18.6 | |||
淀粉 | 姜黄素 | 104.6~406.7 | 米粒状 | — | 姜黄素的热稳定性、pH稳定性、光稳定性显著提高 | [ | |
脂质纳米颗粒 Lipid nanoparticles | 磷脂、胆固醇和吐温80 | 姜黄素 | 68.1 | — | -3.16 | 显著提高姜黄素的抗氧化性和细胞渗透性 | [ |
脂质 | 姜黄素 | 38.9 | 球形 | -6.86 | 可使难溶性药物释放量明显增加,粒径小、包封率高、载药量大 | [ | |
蛋白质纳米颗粒 Protein nanoparticles | 酪蛋白 | 槲皮素 | 200 | 球形 | -15 | 与口服溶液中的檞皮素含量相比,口服相对生物利用程度高出9倍 | [ |
玉米醇溶蛋 | 二氢杨梅素 | 206.4 | 球形 | -29.6 | 稳定性显著提高 | [ | |
金属纳米颗粒 Metal nanoparticles | 银 | 芦丁 | 4~17 | 球形 | 0.241 | 大肠杆菌和金黄色葡萄球菌在经过30次洗涤后,抗菌活性仍然超过90% | [ |
银 | 二氢杨梅素 | 114.76±1.34 | 多分散混合物 | -16.5±2.1 | 自由基清除率在56%~92%左右,具有更强的抗氧化性 | [ | |
复合纳米颗粒 Composite nanoparticles | 玉米醇溶蛋白-可溶性大豆多糖 | 槲皮素 | 200 | — | — | 相较于单一玉米醇溶蛋白包封率增加了23.3% | [ |
玉米醇溶蛋白-硫酸葡聚糖复合物 | 姜黄素 | 123 | — | — | 稳定性显著提高 | [ |
1 | JANG H H , NOH H , KIM H W , et al. Metabolic tracking of isoflavones in soybean products and biosamples from healthy adults after fermented soybean consumption[J]. Food Chem, 2020, 330, 127317. |
2 | PANCHE A N , DIWAN A D , CHANDRA S R . Flavonoids: an overview[J]. J Nutr Sci, 2016, 5, e47. |
3 | SERAFINI M , PELUSO I , RAGUZZINI A . Flavonoids as anti-inflammatory agents[J]. Proc Nutr Soc, 2010, 69 (3): 273- 278. |
4 | 董家吏. 柚皮素衍生物的合成、抗菌、抗氧化及抗炎活性的研究[D]. 重庆: 西南大学, 2021. |
DONG J L. Synthesis and antibacterial, antioxidant, and anti-inflammatory activities of naringenin derivatives[D]. Chongqing: Southwest University, 2021. (in Chinese) | |
5 | JO B G , BONG S K , JEGAL J , et al. Antiallergic effects of phenolic compounds isolated from Stellera chamaejasme on RBL-2H3 cells[J]. Nat Prod Commun, 2020, 15 (7): 1- 7. |
6 | CHEN L , WEI Y , ZHAO S , et al. Antitumor and immunomodulatory activities of total flavonoids extract from persimmon leaves in H22 liver tumor-bearing mice[J]. Sci Rep, 2018, 8 (1): 10523. |
7 | LIU B , WANG Y , YU Q , et al. Synthesis, characterization of catechin-loaded folate-conjugated chitosan nanoparticles and their anti-proliferative effect[J]. CyTA-Journal of Food, 2018, 16 (1): 868- 876. |
8 | TØNNESEN H H , MÁSSON M , LOFTSSON T . Studies of curcumin and curcuminoids. XXVⅡ. Cyclodextrin complexation: Solubility, chemical and photochemical stability[J]. Int J Pharm, 2002, 244 (1-2): 127- 135. |
9 | TØNNESEN H H , KARLSEN J , VAN HENEGOUWEN G B . Studies on curcumin and curcuminoids Ⅷ. Photochemical stability of curcumin[J]. Z Lebensm Unters Forsch, 1986, 183 (2): 116- 122. |
10 | YAO Y , LIN G , XIE Y , et al. Preformulation studies of myricetin: a natural antioxidant flavonoid[J]. Pharmazie, 2014, 69 (1): 19- 26. |
11 | DANG Y , LIN G , XIE Y , et al. Quantitative determination of myricetin in rat plasma by ultra performance liquid chromatography tandem mass spectrometry and its absolute bioavailability[J]. Drug Res(Stuttg), 2014, 64 (10): 516- 522. |
12 | KHAN F , SHEKHAR C , MONDAL T , et al. Removal of industrial dye and pharmaceutical product using the nano and micron-sized PS rough particles studded with Pt nanoparticles[J]. arXiv preprint, 2023, arXiv, 2301.03891. |
13 |
施杲旸, 王莹, 陆辉, 等. 甲状腺癌手术中应用纳米碳负显影技术对甲状旁腺的保护作用[J]. 临床和实验医学杂志, 2024, 23 (2): 180- 183.
doi: 10.3969/j.issn.1671-4695.2024.02.018 |
SHI G Y , WANG Y , LU H , et al. Protective effect of nano-carbon negative imaging technology on parathyroid glands in thyroid cancer surgery[J]. Journal of Clinical and Experimental Medicine, 2024, 23 (2): 180- 183.
doi: 10.3969/j.issn.1671-4695.2024.02.018 |
|
14 | 王玥. 纳米微晶纤维素提升黄酮类水不溶性药物抗氧化性能的研究[D]. 长沙: 长沙理工大学, 2018. |
WANG Y. Study on the improvement of antioxidant properties of water-insoluble flavonoid drugs by nanocrystalline cellulose[D]. Changsha: Changsha University of Science & Technology, 2018. (in Chinese) | |
15 | CHEN Y , JIANG Y , WEN L , et al. Structure, stability and bioaccessibility of icaritin-loaded pectin nanoparticle[J]. Food Hydrocolloid, 2022, 129, 107663. |
16 | 孔令华. 糊精聚合物纳米材料的制备及其负载姜黄素的应用研究[D]. 太原: 山西医科大学, 2023. |
KONG L H. Preparation of dextrin polymer nanoparticles and their application in loading curcumin[D]. Taiyuan: Shanxi Medical University, 2023. (in Chinese) | |
17 | SALATIN S . Nanoparticles as potential tools for improved antioxidant enzyme delivery[J]. Journal of Advanced Chemical and Pharmaceutical Materials, 2018, 1 (3): 65- 66. |
18 | SALTAIN S , BARAR J , BARZEGAR-JALALI M , et al. An alternative approach for improved entrapment efficiency of hydrophilic drug substance in PLGA nanoparticles by interfacial polymer deposition following solvent displacement[J]. Jundishapur Journal of Natural Pharmaceutical Products, 2018, 13 (4) |
19 | 王菲菲. 钴掺杂配位聚合物纳米酶载体的构建及其递送姜黄素治疗炎症性肠病的研究[D]. 扬州: 扬州大学, 2024. |
WANG F F. Construction of cobalt-doped coordination polymer nanozyme carriers and their application in delivering curcumin for inflammatory bowel disease treatment[D]. Yangzhou: Yangzhou University, 2024. (in Chinese) | |
20 | SHAGARI M , ZAMANI M , AHMADI N , et al. Improving the antibacterial activity of curcumin-loaded nanoparticles in wastewater treatment by enhancing permeability and sustained release[J]. J Polym Environ, 2022, 30 (6): 2658- 2668. |
21 | BALAKRISHNAN K , CASIMEER S C , GHIDAN A Y , et al. Exploration of antioxidant, antibacterial activities of green synthesized hesperidin-loaded PLGA nanoparticles[J]. Biointerface Res Appl Chem, 2021, 11 (6): 14520- 14528. |
22 | 张梦阳. 分子量对负载槲皮素的壳聚糖纳米粒及复合膜性能的影响[D]. 上海: 上海海洋大学, 2023. |
ZHANG M Y. Influence of molecular weight on the properties of chitosan nanoparticles and composite membranes loaded with quercetin[D]. Shanghai: Shanghai Ocean University, 2023. (in Chinese) | |
23 | LI F , JIN H , XIAO J , et al. The simultaneous loading of catechin and quercetin on chitosan-based nanoparticles as effective antioxidant and antibacterial agent[J]. Food Res Int, 2018, 111, 351- 360. |
24 | JAHROMI M A M , RAJAYI H , AL-MUSAWI S , et al. Evaluation of antibacterial effect of curcumin-loaded chitosan nanoparticles[J]. Journal of Advanced Biomedical Sciences, 2015, 5 (1): 134- 141. |
25 | JAHROMI M A M , AL-MUSAWI S , PIRESTANI M , et al. Curcumin-loaded chitosan tripolyphosphate nanoparticles as a safe, natural and effective antibiotic inhibits the infection of Staphylococcus aureus and Pseudomonas aeruginosa in vivo[J]. Iran J Biotech, 2014, 12 (3): e1012. |
26 | HU Y , ZHANG W , KE Z , et al. In vitro release and antioxidant activity of Satsuma mandarin (Citrus reticulata Blanco cv. unshiu) peel flavonoids encapsulated by pectin nanoparticles[J]. Int J Food Sci Technol, 2017, 52 (11): 2362- 2373. |
27 | 冯思敏, 黄婷, 张凯航, 等. 茶树花黄酮-玉米醇溶蛋白-果胶纳米颗粒制备及其抗氧化活性研究[J]. 食品与发酵工业, 2024, 50 (8): 48- 54. |
FENG S M , HUANG T , ZHANG K H , et al. Preparation of tea tree flower flavonoid-maize zein-pectin nanoparticles and their antioxidant activity[J]. Food and Fermentation Industries, 2024, 50 (8): 48- 54. | |
28 | XIA W , ZHENG B , LI T , et al. Fabrication, characterization and evaluation of myricetin adsorption onto starch nanoparticles[J]. Carbohydr Polym, 2020, 250, 116848. |
29 | REMANNAN M K , ZHU F . Encapsulation of rutin using quinoa and maize starch nanoparticles[J]. Food Chem, 2021, 353, 128534. |
30 | 钟成鹏. 淀粉纳米颗粒的绿色制备及其在姜黄素负载和智能标签中的应用[D]. 南昌: 南昌大学, 2023. |
ZHONG C P. Green preparation of starch nanoparticles and their application in curcumin loading and smart labeling[D]. Nanchang: Nanchang University, 2023. (in Chinese) | |
31 | CHEN X , ZOU L Q , NIU J , et al. The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes[J]. Molecules, 2015, 20 (8): 14293- 14311. |
32 | 吴赵莉, 韩新宇, 田思宇, 等. 共载姜黄素与胡椒碱纳米结构脂质载体的体外释放研究[J]. 中南药学, 2023, 21 (6): 1436- 1440. |
WU Z L , HAN X Y , TIAN S Y , et al. In vitro release study of nanostructured lipid carriers co-loaded with curcumin and piperine[J]. Central South Pharmacy, 2023, 21 (6): 1436- 1440. | |
33 | DE KRUIF C G , HUPPERTZ T , URBAN V S , et al. Casein micelles and their internal structure[J]. Advances in Colloid and Interface Science, 2012, 171-172, 36- 52. |
34 | LI M , FOKKINK R , NI Y , et al. Bovine beta-casein micelles as delivery systems for hydrophobic flavonoids[J]. Food Hydrocolloids, 2019, 96, 653- 666. |
35 | LI M , KEMBAREN R , NI Y , et al. Effect of enzymatic cross-linking of naringenin-loaded β-casein micelles on their release properties and fate in vitro digestion[J]. Food Chem, 2021, 352, 129400. |
36 | PEÑALVA R , ESPARZA I , MORALES-GRACIA J , et al. Casein nanoparticles in combination with 2-hydroxypropyl-β-cyclodextrin improves the oral bioavailability of quercetin[J]. Int J Pharm, 2019, 570, 118652. |
37 | CHENG C J , FERRUZZI M , JONES O G . Fate of lutein-containing zein nanoparticles following simulated gastric and intestinal digestion[J]. Food Hydrocolloids, 2019, 87, 229- 236. |
38 | SUN C C , SU H , ZHENG G D , et al. Fabrication and characterization of dihydromyricetin encapsulated zein-caseinate nanoparticles and its bioavailability in rat[J]. Food Chem, 2020, 330, 127245. |
39 | ZHANG L C , CHEN L Y . A review on biomedical titanium alloys: recent progress and prospect[J]. Advanced Engineering Materials, 2019, 21 (4): 1801215. |
40 | REN X , LV X , CHEN Z , et al. Preparation of Ag nanoclusters-modified non-sintered silica ceramic-like nanosheet for removing dyes and bacteria from water[J]. Int J Nanomedicine, 2021, 16, 895- 904. |
41 | EL-SHERBINY G M , ABOU EL-NOUR S A , ASKAR A A , et al. Solar radiation-induced synthesis of bacterial cellulose/silver nanoparticles (BC/AgNPs) composite using BC as reducing and capping agent[J]. Bioprocess Biosyst Eng, 2022, 45 (2): 257- 268. |
42 | ZHOU Y , TANG R C . Facile and eco-friendly fabrication of colored and bioactive silk materials using silver nanoparticles synthesized by two flavonoids[J]. Polymers(Basel), 2018, 10 (4): 404. |
43 | LI Z , ALI I , QIU J , et al. Eco-friendly and facile synthesis of antioxidant, antibacterial and anticancer dihydromyricetin-mediated silver nanoparticles[J]. Int J Nanomedicine, 2021, 16, 481- 492. |
44 | LI H , WANG D , LIU C , et al. Fabrication of stable zein nanoparticles coated with soluble soybean polysaccharide for encapsulation of quercetin[J]. Food Hydrocolloids, 2019, 87, 342- 351. |
45 | YUAN Y , LI H , ZHU J , et al. Fabrication and characterization of zein nanoparticles by dextran sulfate coating as vehicles for delivery of curcumin[J]. Int J Biol Macromol, 2020, 151, 1074- 1083. |
46 | GUO Y , DING S-J , DING X , et al. Effects of selected flavonoids on cell proliferation and differentiation of porcine muscle stem cells for cultured meat production[J]. Food Res Int, 2022, 160, 111459. |
47 | WEI C , CHEN X , CHEN D , et al. Effects of dietary dihydromyricetin supplementation on intestinal barrier and humoral immunity in growing-finishing pigs[J]. Anim Biotechnol, 2022, 33 (7): 1398- 1406. |
48 | LI Y , HE G R , CHEN D W , et al. Supplementing daid-zein in diets improves the reproductive performance, endocrine hormones and antioxidant capacity of multiparous sows[J]. Anim Nutr, 2021, 7 (4): 1052- 1060. |
49 | 刘璐璐, 王洲婷, 丁传波, 等. 加工方法对毛豆中大豆异黄酮苷元含量的影响及其对糖尿病小鼠的降血糖降血脂活性研究[J]. 天然产物研究与开发, 2014, 26 (10): 1659- 1663. |
LIU L L , WANG Z T , DING C B , et al. Effects of processing methods on the content of soy isoflavone aglycones in edamame and their hypoglycemic and hypolipidemic activities in diabetic mice[J]. Natural Product Research and Development, 2014, 26 (10): 1659- 1663. | |
50 | CUI K , WANG Q , WANG S Q , et al. The facilitating effect of tartary buckwheat flavonoids and Lactobacillus plantarum on the growth performance, nutrient digestibility, antioxidant capacity, and fecal microbiota of weaned piglets[J]. Animals(Basel), 2019, 9 (11): 986. |
51 | ZHANG J , WANG D , WU Y , et al. Lipid-polymer hybrid nanoparticles for oral delivery of tartary buckwheat flavonoids[J]. J Agric Food Chem, 2018, 66 (19): 4923- 4932. |
52 | WANG X C , WANG X H , WANG J , et al. Dietary tea polyphenol supplementation improved egg production performance, albumen quality, and magnum morphology of Hy-Line Brown hens during the late laying period[J]. J Anim Sci, 2018, 96 (1): 225- 235. |
53 | 杨奇, 杨宇生, 曾妮, 等. 竹叶黄酮对持续高温状态下肉鸡生长性能和屠宰性能的影响[J]. 饲料工业, 2014, 35 (8): 6- 8. |
YANG Q , YANG Y S , ZENG N , et al. Effects of bamboo leaf flavonoids on growth and slaughter performance of broilers under continuous high temperature[J]. Feed Industry, 2014, 35 (8): 6- 8. | |
54 | OUYANG K , XU M , JIANG Y , et al. Effects of alfalfa flavonoids on broiler performance, meat quality and gene expression[J]. Canadian Journal of Animal Science, 2016, 96 (3): 332- 341. |
55 | LIU D Y , HE S J , JIN E H , et al. Effect of daidzein on production performance and serum antioxidative function in late lactation cows under heat stress[J]. Livestock Science, 2013, 152 (1): 16- 20. |
56 | 侯昆, 童津津, 楚康康, 等. 竹叶黄酮与青蒿提取物对患隐性乳房炎奶牛产奶性能、乳中体细胞数及血清免疫和抗氧化相关指标的影响[J]. 动物营养学报, 2019, 31 (9): 4286- 4295. |
HOU K , TONG J J , CHU K K , et al. Effects of bamboo leaf flavonoids and artemisinin extract on milk production, somatic cell count in milk, and serum immune and antioxidant indices in cows with subclinical mastitis[J]. Journal of Animal Nutrition, 2019, 31 (9): 4286- 4295. | |
57 | 张一涵, 贺李莹, 陈逸, 等. 沙棘黄酮对泌乳中期荷斯坦奶牛生产性能、乳中生物活性成分及血清生化和抗氧化指标的影响[J]. 动物营养学报, 2022, 34 (6): 3666- 3675. |
ZHANG Y H , HE L Y , CHEN Y , et al. Effects of sea buckthorn flavonoids on production performance, bioactive components in milk, and serum biochemical and antioxidant indices in mid-lactation Holstein cows[J]. Journal of Animal Nutrition, 2022, 34 (6): 3666- 3675. | |
58 | GENG R , MA L , LIU L L , et al. Influence of bovine serum albumin-flavonoid interaction on the antioxidant activity of dietary flavonoids: new evidence from electrochemical quantification[J]. Molecules, 2018, 24 (1): 70. |
59 | CHEN Y C , YU S H , TSAI G J , et al. Novel technology for the preparation of self-assembled catechin/gelatin nanoparticles and their characterization[J]. J Agric Food Chem, 2010, 58 (11): 6728- 6734. |
60 | ISKENDER H , YENICE G , DOKUMACIOGLU E , et al. Comparison of the effects of dietary supplementation of flavonoids on laying hen performance, egg quality and egg nutrient profile[J]. Br Poult Sci, 2017, 58 (5): 550- 556. |
[1] | 霍振, 庄蕾, 周伟, 王帅钦, 谢明, 侯水生, 唐静. 叶酸对1~21日龄北京鸭生产性能、血浆生化指标和抗氧化能力的影响[J]. 畜牧兽医学报, 2025, 56(7): 3327-3334. |
[2] | 彭文文, 张美婷, 徐灏铖, 徐保阳, 张玲玲, 杨彩梅. 地衣芽孢杆菌对大肠杆菌攻毒感染肉鸡免疫、抗氧化性能和肠道健康的影响[J]. 畜牧兽医学报, 2025, 56(7): 3344-3356. |
[3] | 潘华, 孙磊, 张军, 刘莉莉, 马文刚, 曹爱智, 吕明斌. 胆汁酸抑菌机制及结构改性的研究进展[J]. 畜牧兽医学报, 2025, 56(6): 2546-2554. |
[4] | 国德洋, 胡慧, 郑雪莉, 姜艳芬. 猪防御素-1的原核表达及抑菌效应分析[J]. 畜牧兽医学报, 2025, 56(6): 2836-2846. |
[5] | 言凯, 许笑, 秦哲, 白莉霞, 李准, 杨亚军, 刘希望, 李世宏, 葛闻博, 李剑勇, 李存. 阿司匹林丁香酚酯对蛋鸡脂肪肝出血综合征的预防作用[J]. 畜牧兽医学报, 2025, 56(6): 2968-2977. |
[6] | 梁莉雯, 李军星, 袁秀芳, 余斌, 叶十一, 徐丽华, 苏菲, 刘璨颖. 从油茶籽提取的茶皂素对猪源多重耐药产肠毒素大肠杆菌的体外抑菌效果[J]. 畜牧兽医学报, 2025, 56(5): 2451-2465. |
[7] | 陈泽晗, 张偌益, 林惠莹, 曾春丽, 林福, 李健. 基于HPLC指纹图谱和网络药理学的白屈菜缓解IPEC-J2细胞炎性损伤作用研究[J]. 畜牧兽医学报, 2025, 56(5): 2466-2480. |
[8] | 马应天, 姜璐瑶, 李增开, 秦剑平, 赵建华, 贺玉芳, 宋宇轩, 张磊. 矢车菊素-3-芸香糖苷对奶绵羊精液冷冻保存效果的影响[J]. 畜牧兽医学报, 2025, 56(4): 1768-1778. |
[9] | 邱谦, 桑锐, 王巍, 刘馨蔓, 于明弘, 刘晓童, 于天, 张雪梅. 呼宁散对鸡肺源大肠杆菌抑菌活性及体外抗炎、抗氧化作用研究[J]. 畜牧兽医学报, 2025, 56(4): 1969-1980. |
[10] | 赵文悦, 杨景, 邵怡岚, 李佳璇, 姜艳平, 崔文, 王晓娜, 唐丽杰. 表达牛乳铁蛋白肽的罗伊氏乳杆菌分泌型信号肽的筛选及鉴定[J]. 畜牧兽医学报, 2025, 56(3): 1431-1440. |
[11] | 梁恩堂, 李化轩, 陈帅成, 李果, 孙格格, 昝林森. 染料木素对牛精液冷冻保存效果的影响[J]. 畜牧兽医学报, 2025, 56(2): 700-710. |
[12] | 张雨, 王琪茹, 师鑫潮, 郭子明, 何欣, 张铁, 赵兴华. 厚朴酚固体分散体对犊牛生长性能、血清抗氧化能力和肠道微生物的影响[J]. 畜牧兽医学报, 2025, 56(2): 943-952. |
[13] | 杨硕, 霍敏, 苏子轩, 石玉祥. 线粒体质量控制对畜禽氧化应激影响的研究进展[J]. 畜牧兽医学报, 2024, 55(9): 3769-3776. |
[14] | 刘玲, 史万玉, 李秀梅, 王明华, 翟向和, 周炜炜. 陈皮精油对脂多糖诱导的RAW264.7细胞炎症的干预作用[J]. 畜牧兽医学报, 2024, 55(9): 4153-4160. |
[15] | 李碧波, 吴克, 师晓龙, 闫奕凝, 李嘉豪, 段国庆, 李熊, 任彦鹏, 董佳宁, 张春香, 任有蛇. 羊源Lactobacillus plantarum对腹泻羔羊空肠菌群及肠道黏膜屏障的调控作用[J]. 畜牧兽医学报, 2024, 55(8): 3552-3569. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||