1 |
KOCHANOWSKY J A , KOSHY A A . $ Toxoplasma \;gondii$[J]. Curr Biol, 2018, 28 (14): R770- R771.
|
2 |
JACOBSON F S , MORGAN R W , CHRISTMAN M F , et al. An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage[J]. J Biol Chem, 1989, 264 (3): 1488- 1496.
doi: 10.1016/S0005-2728(89)80408-6
|
3 |
WHITE M W , RADKE J R , RADKE J B . Toxoplasma development-turn the switch on or off?[J]. Cell Microbiol, 2014, 16 (4): 466- 472.
|
4 |
SANCHEZ S G , BESTEIRO S . The pathogenicity and virulence of Toxoplasma gondii[J]. Virulence, 2021, 12 (1): 3095- 3114.
|
5 |
SMITH N C , GOULART C , HAYWARD J A , et al. Control of human toxoplasmosis[J]. Int J Parasitol, 2021, 51 (2-3): 95- 121.
|
6 |
HAMPTON M M . Congenital toxoplasmosis: a review[J]. Neonatal Netw, 2015, 34 (5): 274- 278.
|
7 |
BEN-HARARI R R , CONNOLLY M P . High burden and low awareness of toxoplasmosis in the United States[J]. Postgrad Med, 2019, 131 (2): 103- 108.
|
8 |
HUNTER C A , SIBLEY L D . Modulation of innate immunity by Toxoplasma gondii virulence effectors[J]. Nat Rev Microbiol, 2012, 10 (11): 766- 778.
|
9 |
蒲元华, 张德林, 等. 弓形虫入侵宿主机制及免疫学研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2012, 30 (6): 480-485, 490.
|
|
PU Y H , ZHANG D L . Research progress on invasion mechanism and immunology of Toxoplasma gondii[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2012, 30 (6): 480-485, 490.
|
10 |
陆金苗, 韦娜娜, 周金林, 等. 硫氧还蛋白还原酶结构与功能研究进展[J]. 动物医学进展, 2019, 40 (9): 79- 83.
|
|
LU J M , WEI N N , ZHOU J L , et al. Progress on structures and functions of thioredoxin reductase[J]. Progress in Veterinary Medicine, 2019, 40 (9): 79- 83.
|
11 |
XUE J X , JIANG W , CHEN Y J , et al. Thioredoxin reductase from Toxoplasma gondii: an essential virulence effector with antioxidant function[J]. FASEB J, 2017, 31 (10): 4447- 4457.
|
12 |
郑斌, 陆绍红. 刚地弓形虫免疫逃避相关分子的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2012, 30 (5): 396- 400.
|
|
ZHENG B , LU S H . Immune evasion molecules of Toxoplasma gondii[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2012, 30 (5): 396- 400.
|
13 |
REESE M L , SHAH N , BOOTHROYD J C . The Toxoplasma pseudokinase ROP5 is an allosteric inhibitor of the immunity-related GTPases[J]. J Biol Chem, 2014, 289 (40): 27849- 27858.
|
14 |
NIEDELMAN W , GOLD D A , ROSOWSKI E E , et al. The rhoptry proteins ROP18 and ROP5 mediate Toxoplasma gondii evasion of the murine, but not the human, interferon-gamma response[J]. PLoS Pathog, 2012, 8 (6): e1002784.
|
15 |
ETHERIDGE R D , ALAGANAN A , TANG K L , et al. The Toxoplasma pseudokinase ROP5 forms complexes with ROP18 and ROP17 kinases that synergize to control acute virulence in mice[J]. Cell Host Microbe, 2014, 15 (5): 537- 550.
|
16 |
ISHINO Y , SHINAGAWA H , MAKINO K , et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. J Bacteriol, 1987, 169 (12): 5429- 5433.
|
17 |
HRYHOROWICZ M , LIPIŃSKI D , ZEYLAND J , et al. CRISPR/Cas9 immune system as a tool for genome engineering[J]. Arch Immunol Ther Exp (Warsz), 2016, 65 (3): 233- 240.
|
18 |
GASIUNAS G , BARRANGOU R , HORVATH P , et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proc Natl Acad Sci U S A, 2012, 109 (39): E2579- E2586.
|
19 |
JINEK M , CHYLINSKI K , FONFARA I , et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337 (6096): 816- 821.
|
20 |
XU R F , QIN R Y , XIE H J , et al. Genome editing with type Ⅱ-C CRISPR-Cas9 systems from Neisseria meningitidis in rice[J]. Plant Biotechnol J, 2022, 20 (2): 350- 359.
|
21 |
FOX B A , RISTUCCIA J G , GIGLEY J P , et al. Efficient gene replacements in Toxoplasma gondii strains deficient for nonhomologous end joining[J]. Eukaryotic Cell, 2009, 8 (4): 520- 529.
|
22 |
SHEN B , BROWN K , LONG S J , et al. Development of CRISPR/Cas9 for efficient genome editing in Toxoplasma gondii[J]. Methods Mol Biol, 2017, 1498, 79- 103.
|
23 |
LONG S J , BROWN K M , DREWRY L L , et al. Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii[J]. PLoS Pathog, 2017, 13 (5): e1006379.
|
24 |
REESE M L , ZEINER G M , SAEIJ J P J , et al. Polymorphic family of injected pseudokinases is paramount in Toxoplasma virulence[J]. Proc Natl Acad Sci U S A, 2011, 108 (23): 9625- 9630.
|
25 |
STEINFELDT T , KÖNEN-WAISMAN S , TONG L , et al. Phosphorylation of mouse immunity-related GTPase (IRG) resistance proteins is an evasion strategy for virulent Toxoplasma gondii[J]. PLoS Biol, 2010, 8 (12): e1000576.
|
26 |
陈芸, 刘旗, 张曼玉, 等. 弓形虫ROP5与ROP18的双基因缺失株构建及表型鉴定[J]. 中国动物传染病学报, 2023, 31 (3): 1- 11.
|
|
CHEN Y , LIU Q , ZHANG M Y , et al. Construction and phenotype identification of ROP5 and ROP18 double gene deletion strain of Toxoplasma gondii[J]. Chinese Journal of Animal Infectious Diseases, 2023, 31 (3): 1- 11.
|
27 |
RANI V , DEEP G , SINGH R K , et al. Oxidative stress and metabolic disorders: pathogenesis and therapeutic strategies[J]. Life Sci, 2016, 148, 183- 193.
|
28 |
DOMAŃSKI L , PIETRZAK-NOWACKA M , SZMATŁOCH E , et al. [Malonyldialdehyde, uric acid and white cell count as markers of oxidative stress in acute myocardial infarction and acute coronary insufficiency][J]. Pol Merkur Lekarski, 2001, 11 (62): 121- 124.
|
29 |
TSIKAS D . Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges[J]. Anal Biochem, 2017, 524, 13- 30.
|
30 |
YAROVINSKY F , ZHANG D K , ANDERSEN J F , et al. TLR11 activation of dendritic cells by a protozoan profilin-like protein[J]. Science, 2005, 308 (5728): 1626- 1629.
|
31 |
DEBIERRE-GROCKIEGO F , CAMPOS M A , AZZOUZ N , et al. Activation of TLR2 and TLR4 by glycosylphosphatidylinositols derived from Toxoplasma gondii[J]. J Immunol, 2007, 179 (2): 1129- 1137.
|
32 |
SCANGA C A , ALIBERTI J , JANKOVIC D , et al. Cutting edge: MyD88 is required for resistance to Toxoplasma gondii infection and regulates parasite-induced IL-12 production by dendritic cells[J]. J Immunol, 2002, 168 (12): 5997- 6001.
|
33 |
SUZUKI Y , ORELLANA M A , SCHREIBER R D , et al. Interferon-γ: the major mediator of resistance against Toxoplasma gondii[J]. Science, 1988, 240 (4851): 516- 518.
|
34 |
YAP G S , SHER A . Effector cells of both nonhemopoietic and hemopoietic origin are required for interferon (IFN)-γ- and tumor necrosis factor (TNF)-α-dependent host resistance to the intracellular pathogen, Toxoplasma gondii[J]. J Exp Med, 1999, 189 (7): 1083- 1092.
|