畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (7): 2859-2876.doi: 10.11843/j.issn.0366-6964.2024.07.008
陈秀琴1,2(), 林甦1,2, 张世忠1, 郑敏1,2, 黄梅清1,2,*(
)
收稿日期:
2023-10-26
出版日期:
2024-07-23
发布日期:
2024-07-24
通讯作者:
黄梅清
E-mail:lyunxqchen@163.com;meiqingmail@126.com
作者简介:
陈秀琴(1988-),女,福建漳州人,助理研究员,博士,主要从事畜禽疫病诊断方法研究,E-mail: lyunxqchen@163.com
基金资助:
Xiuqin CHEN1,2(), Su LIN1,2, Shizhong ZHANG1, Min ZHENG1,2, Meiqing HUANG1,2,*(
)
Received:
2023-10-26
Online:
2024-07-23
Published:
2024-07-24
Contact:
Meiqing HUANG
E-mail:lyunxqchen@163.com;meiqingmail@126.com
摘要:
动物疫病不仅严重危害动物健康,阻碍养殖业良性发展,而且对人类健康构成潜在威胁。开发灵敏、特异、快速的诊断方法对于疫病防控尤为重要。PCR是目前检测病原体核酸的金标准,但是它存在检测周期较长,需要精密仪器和专业技术人员,无法应用于现场即时检测等局限性。成簇规律间隔短回文重复序列及其相关蛋白(clustered regularly interspaced short palindromic repeats/CRISPR-associated protein, CRISPR/Cas)具有敏感性高、特异性强和操作简便等优点,可为动物疫病诊断提供新的方法和契机。CRISPR-Cas9靶向核酸的特异性和CRISPR-Cas12/Cas13“附属切割”活性使其在核酸检测中显示出巨大的应用前景。本文简述了CRISPR/Cas系统的分类,对3种常用的CRISPR/Cas系统的核酸检测策略进行系统阐述,并对其在动物疫病诊断中应用的最新研究进展进行综述,最后讨论了它的优势、面临的挑战及未来发展方向,以期为动物疫病诊断新方法的开发提供参考。
中图分类号:
陈秀琴, 林甦, 张世忠, 郑敏, 黄梅清. 基于CRISPR/Cas系统的生物传感器在动物疫病诊断中的应用[J]. 畜牧兽医学报, 2024, 55(7): 2859-2876.
Xiuqin CHEN, Su LIN, Shizhong ZHANG, Min ZHENG, Meiqing HUANG. Application of CRISPR/Cas-based Biosensors for Animal Diseases Diagnosis[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2859-2876.
表 1
第二大类CRISPR系统特征概述"
亚型Subtypes | Ⅱ型Type Ⅱ | Ⅴ型Type Ⅴ | Ⅵ型Type Ⅵ | |
效应蛋白 Effector protein | Cas9 | Cas12a | Cas14a/b | Cas13a/b |
核酸酶结构域 Nuclease domains | RuvC、HNH | RuvC | RuvC | HEPNa |
向导RNA Guide RNA | tracrRNAb、crRNAc | crRNA | tracrRNA、crRNA | crRNA |
间隔区长度/nt Spacer length | 18~24 | 18~25 | 20~40 | 22~30 |
PAM/PFS | 3′ GC-rich PAMd | 5′ AT-rich PAM | - | 3′ PFSe: non-G |
结合的靶标 Target binding | dsDNA | DNA (ds/ssf) | DNA (ds/ss) | ssRNA |
反式切割底物 Trans-cleavage substrates | - | ssDNA | ssDNA | ssRNA |
表 2
CRISPR/Cas系统在病毒性疫病诊断的应用"
靶标 Target | 效应蛋白 Effector protein | 扩增方法 Amplification | 信号输出 Signal output | 敏感性 Sensitivity | 检测时间 Time | POCT | 特点 Characteristic | 参考文献 References |
SARS-CoV-2 | AapCas12b | LAMP | F/E | 0.5 copies·μL-1 | 40 min | 是 | 将AapCas12b的激活序列定位在扩增子的环区域而不是靶序列上,使得靶链不会在扩增之前被Cas12b裂解,从而实现单管可视化检测 | [ |
SARS-CoV-2 | LbCas12a | LAMP | LFA | 1×10-18 mol·L-1 | 数分钟 | 是 | 将商业妊娠试纸条与4种(人绒毛膜促性腺激素、CRISPR-Cas12a、crRNA和花椰菜状大型DNA组装体)生物元件集成在一起;可用于检测任何单链和双链的靶标核酸;设计了手机应用程序和手持式微芯片来实现信号量化 | [ |
猪繁殖与呼吸综合征病毒 Porcine reproductive and respiratory syndrome virus | LwCas13a | RT-RPA | F/LFA | 172 copies·μL-1 | 1~3 h | 是 | - | [ |
日本脑炎病毒 Japanese encephalitis virus | LbCas12a | RT-LAMP | F/LFA | 8.97 copies·μL-1 | ~1 h | 是 | LAMP体系和Cas12a体系在同个反应管进行, 结果可视化 | [ |
猪细小病毒 Porcine parvovirus | LbCas12a | ERA | LFA | 3.75×102 copies·μL-1 | - | 是 | - | [ |
牛结节性疹病毒 Lumpy skin disease virus | LbCas12a | PCR/RPA | F/LFA | 1 copies·反应-1 | <5 h | 是 | - | [ |
猴痘病毒 Monkeypox virus | LbCas12a | RPA | F | 55 copies·μL-1 | ~35 min | 是 | 开发一款掌心大小的工具袋用于现场可视化检测 | [ |
狂犬病病毒 Rabies virus | LbCas12a | 靶标结合诱导的等温扩增 | ECL | 2.8×10-12mol·L-1 | 11 h | 否 | 引入DNA纳米镊子结构 | [ |
2型犬细小病毒 Canine parvovirus type 2 | LwCas13a | RPA | F | 100×10-18 mol·L-1 | <30 min | 否 | - | [ |
鹅星状病毒 Goose astrovirus | LbCas12a | RT-ERA | F | 2 copies | <1 h | 是 | - | [ |
鸭坦布苏病毒 Duck tembusu virus | LbCas13a | RT-RPA | F/LFA | 1 copies·mL-1 | - | 是 | - | [ |
表 3
CRISPR/Cas系统在细菌及真菌性疫病诊断中的应用"
靶标 Target | 效应蛋白 Effector protein | 扩增方法 Amplification | 信号输出 Signal output | 敏感性 Sensitivity | 检测时间 Time | POCT | 特点 Characteristic | 参考文献 References |
耐甲氧西林金黄色葡萄球菌 Methicillin-resistant Staphylococcus aureus | dCas9 | 无 | F | 10 CFU·mL-1 | <30 min | 是 | 采用dCas9/sgRNA复合物作为靶向材料,SYBR Green I作为荧光探针;无需使用细胞裂解物进行基因分离步骤 | [ |
产单核细胞李氏杆菌 Listeria monocytogenes | LbCas12a | RPA | E | 0.68×10-18 mol·L-1 | <2 h | 否 | - | [ |
副溶血性弧菌 Vibrio parahaemolyticus | LbCas12a | LAMP | F | 30 copies·反应-1 | 50 min | 是 | 离心式芯片耦合CRISPR/Cas12a系统的集成核酸检测方法 | [ |
副溶血性弧菌 Vibrio parahaemolyticus | LbCas12a | RPA | F | 12.3 CFU·mL-1 | - | 否 | 一个RPA扩增产物可以激活多CRISPR/Cas12a单元;克服了PAM限制的局限性 | [ |
沙门菌 Salmonella | LbCas12a | 无 | C | 1 CFU·mL-1 | <3 h | 是 | 利用无标记G-四链体作为报告系统;结果既可以用肉眼识别,也可以用智能手机辅助定量测量 | [ |
鼠伤寒沙门菌 Salmonella Typhimurium | LbCas12a | LAMP | F | 1 CFU·mL-1 | ~2 h | 否 | 首次将比率型荧光信号读数与CRISPR/Cas结合起来; 使用无标记DNA模板的银纳米簇将目标核酸信号转换为双色荧光 | [ |
鼠伤寒沙氏菌 Salmonella Typhimurium | LbCas12a | 末端脱氧核苷酸转移酶(Tdt)介导的信号放大 | F | 53 CFU·mL-1 | - | 否 | 率先将尿嘧啶-DNA糖基化酶(UDG)消化技术与V型PCR(VPCR)相结合;首次将Tdt介导的信号放大技术用于预制备的多聚磁探针;构建的UDG-VPCR驱动的Cas12a-MRS(磁弛豫开关)具有四重特异性;解决了与核酸扩增相结合的Cas12a系统相关的气溶胶污染问题 | [ |
7种食源性致病菌 Seven food-borne pathogens | LbCas12a | RPA | F | <500 CFU·mL-1 | ~1 h | 是 | 开发了一种基于单管CRISPR/Cas12a-RPA的手指驱动微流体生物传感器;同时检测7种致病菌;解决了气溶胶污染问题 | [ |
7种食源性致病菌 Seven food-borne pathogens | LbCas13a | RAA | 液滴 微流控 | 10 copies·μL-1 | ~1 h | 否 | 开发了一种基于单管CRISPR/Cas13a-RAA的液滴微流控平台,目标细菌鉴定通过液滴的颜色确定,通过泊松分布计算阳性液滴的百分比来计算目标细菌浓度。解决了气溶胶污染问题,且定量更准确 | [ |
金黄色葡萄球菌 Staphylococcus aureus | LbCas12a | SDA | ECL | 0.437×10-18 mol·L-1 | - | 否 | 卟啉Zr金属有机骨架作为共反应促进剂加速了电子转移并提高了ECL发光效率;设计有缺陷的T型连接结构用于SDA,消除了对目标DNA长度的考虑,具有更高的特异性和稳定性 | [ |
炭疽杆菌 Bacillus anthracis | LbCas12a | RPA | F | 2 copies·反应-1 | 40 min | 是 | - | [ |
布鲁氏菌 Brucella spp. | LbCas12a | RPA | F/E | 2 copies·反应-1 | - | 否 | - | [ |
幽门螺杆菌 Helicobacter pylori | LbCas12a | MIRA | F/LFA | 1 copies·反应-1 (F);4 copies·反应-1 | 45 min | 是 | - | [ |
犬小孢子菌和须癣毛癣菌 Microsporum canis, Trichophyton mentagrophytes | LbCas12a | RPA | F | 100% | ~30 min | 是 | - | [ |
念珠菌、曲霉菌和隐球菌 Candida, Aspergillus, Cryptococcus | LbCas12a | RT-RPA | 纸基微流控 | <10 CFU·mL-1 | - | 是 | 通过DNA智能水凝胶体系和葡萄糖氧化酶-辣根过氧化物酶级联反应进行信号的放大与转导,并最终利用纸基微流控芯片进行肉眼读取结果 | [ |
表 4
CRISPR/Cas系统在寄生虫病诊断中的应用"
靶标 Target | 效应蛋白 Effector protein | 扩增方法 Amplification | 信号输出 Signal output | 敏感性 Sensitivity | 检测时间 Time | POCT | 特点 Characteristic | 参考文献 References |
7种艾美耳球虫 Seven Eimeria species | FnCas12a | RPA | LFA | 1 copies·μL-1 | - | 是 | - | [ |
布氏冈比亚锥虫 Trypanosoma brucei | LwCas13a | RPA | F/LFA | 0.1条·μL-1 | 一步法:1 h 30 min, 两步法:2 h 30 min | 是 | - | [ |
弓形虫 Toxoplams gondii | LbCas12a | RPA | F/LFA | 1.5 copies·μL-1的重组质粒;针对B1基因至少检测到1个速殖子·反应-1,针对529 bp重复序列可检测到0.1个速殖子·反应-1 | - | 是 | - | [ |
弓形虫 Toxoplams gondii | LbCas12a | RPA | F/LFA | 3.3 copies·μL-1 | <1 h | 是 | 无需离心设备,使用玻璃微纤维过滤器的纸片和磁珠快速提取污水中弓形虫速殖子的基因组DNA;开发42 cm×30 cm×15 cm便携式手提箱,装有必需设备和冻干试剂,方便现场检测。 | [ |
隐孢子虫 Cryptosporidium parvum | LbCas12a | RPA | F/LFA | 1 copies·μL-1,从粪便中检测到的最低卵囊浓度为每克粪便10个卵囊 | - | 是 | - | [ |
华支睾吸虫 Clonorchis sinensis | LbCas12a | RPA | F/LFA | 1 copies·μL-1 | ~ 1 h | 是 | - | [ |
表 5
基于CRISPR/Cas的核酸检测方法与其它核酸检测方法的性能比较"
检测方法 Detection method | 敏感性 Sensitivity | 特异性 Specificity | 检测速度 Speed | POCT | 可操作性 Operability | 检测病原体的广度 Breadth of pathogens | 成本 Cost |
PCR | 高 | 较高 | h | 否 | 中等 | 广 | 中等 |
等温扩增a Isothermal amplification | 中等 | 中等 | min~h | 是 | 容易 | 广 | 较高 |
基因测序 Gene sequencing | 中等 | 高 | 数小时至数天 | 否 | 最难 | 无限 | 高 |
CRISPR/Cas | 可以很高 | 高 | min~h | 是 | 较容易 | 广 | 可以很低 |
1 |
JONES K E , PATEL N G , LEVY M A , et al. Global trends in emerging infectious diseases[J]. Nature, 2008, 451 (7181): 990- 993.
doi: 10.1038/nature06536 |
2 |
RODÓ X , SAN-JOSÉ A , KIRCHGATTER K , et al. Changing climate and the COVID-19 pandemic: more than just heads or tails[J]. Nat Med, 2021, 27 (4): 576- 579.
doi: 10.1038/s41591-021-01303-y |
3 |
ZHANG N R , WANG L L , DENG X Q , et al. Recent advances in the detection of respiratory virus infection in humans[J]. J Med Virol, 2020, 92 (4): 408- 417.
doi: 10.1002/jmv.25674 |
4 |
WANG L Q , WANG X J , WU Y G , et al. Rapid and ultrasensitive electromechanical detection of ions, biomolecules and SARS-CoV-2 RNA in unamplified samples[J]. Nat Biomed Eng, 2022, 6 (3): 276- 285.
doi: 10.1038/s41551-021-00833-7 |
5 |
ZHAO Y X , CHEN F , LI Q , et al. Isothermal amplification of nucleic acids[J]. Chem Rev, 2015, 115 (22): 12491- 12545.
doi: 10.1021/acs.chemrev.5b00428 |
6 |
HU F , LIU Y F , ZHAO S H , et al. A one-pot CRISPR/Cas13a-based contamination-free biosensor for low-cost and rapid nucleic acid diagnostics[J]. Biosens Bioelectron, 2022, 202, 113994.
doi: 10.1016/j.bios.2022.113994 |
7 | ZANOLI L , SPOTO G . Isothermal amplification methods for the detection of nucleic acids in microfluidic devices[J]. Biosensors (Basel), 2013, 3 (1): 18- 43. |
8 |
TIAN T , ZHOU X M . CRISPR-based biosensing strategies: technical development and application prospects[J]. Annu Rev Anal Chem, 2023, 16, 311- 332.
doi: 10.1146/annurev-anchem-090822-014725 |
9 |
PANG B , XU J Y , LIU Y M , et al. Isothermal amplification and ambient visualization in a single tube for the detection of SARS-CoV-2 using loop-mediated amplification and CRISPR technology[J]. Anal Chem, 2020, 92 (24): 16204- 16212.
doi: 10.1021/acs.analchem.0c04047 |
10 |
GOOTENBERG J S , ABUDAYYEH O O , LEE J W , et al. Nucleic acid detection with CRISPR-Cas13a/C2c2[J]. Science, 2017, 356 (6336): 438- 442.
doi: 10.1126/science.aam9321 |
11 |
ARIZTI-SANZ J , FREIJE C A , STANTON A C , et al. Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2[J]. Nat Commun, 2020, 11 (1): 5921.
doi: 10.1038/s41467-020-19097-x |
12 |
FOZOUNI P , SON S , DÍAZ DE LEÓN DERBY M , et al. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy[J]. Cell, 2021, 184 (2): 323- 333.e9.
doi: 10.1016/j.cell.2020.12.001 |
13 |
LI Y R , LIU Y J , TANG X Q , et al. CRISPR/Cas-powered amplification-free detection of nucleic acids: current state of the art, challenges, and futuristic perspectives[J]. ACS Sens, 2023, 8 (12): 4420- 4441.
doi: 10.1021/acssensors.3c01463 |
14 |
YANG H , ZHANG Y , TENG X C , et al. CRISPR-based nucleic acid diagnostics for pathogens[J]. Trends Analyt Chem, 2023, 160, 116980.
doi: 10.1016/j.trac.2023.116980 |
15 |
HE Y W , HU Q Q , SAN S , et al. CRISPR-based biosensors for human health: a novel strategy to detect emerging infectious diseases[J]. Trends Analyt Chem, 2023, 168, 117342.
doi: 10.1016/j.trac.2023.117342 |
16 | 李梦茹, 秦志强, 殷堃, 等. CRISPR/Cas系统在病原体核酸检测中的应用进展[J]. 中国血吸虫病防治杂志, 2023, 35 (1): 98-103, 110. |
LI M R , QIN Z Q , YIN K , et al. Application of CRISPR/Cas systems in the nucleic acid detection of pathogens: a review[J]. Chinese Journal of Schistosomiasis Control, 2023, 35 (1): 98-103, 110. | |
17 |
POURCEL C , SALVIGNOL G , VERGNAUD G . CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies[J]. Microbiology (Reading), 2005, 151 (3): 653- 663.
doi: 10.1099/mic.0.27437-0 |
18 |
MAKAROVA K S , WOLF Y I , ALKHNBASHI O S , et al. An updated evolutionary classification of CRISPR-Cas systems[J]. Nat Rev Microbiol, 2015, 13 (11): 722- 736.
doi: 10.1038/nrmicro3569 |
19 |
HSU P D , LANDER E S , ZHANG F . Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157 (6): 1262- 1278.
doi: 10.1016/j.cell.2014.05.010 |
20 |
GILBERT L A , LARSON M H , MORSUT L , et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes[J]. Cell, 2013, 154 (2): 442- 451.
doi: 10.1016/j.cell.2013.06.044 |
21 |
CHEN J S , MA E B , HARRINGTON L B , et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018, 360 (6387): 436- 439.
doi: 10.1126/science.aar6245 |
22 |
HUANG M Q , ZHOU X M , WANG H Y , et al. Clustered regularly interspaced short palindromic repeats/Cas9 triggered isothermal amplification for site-specific nucleic acid detection[J]. Anal Chem, 2018, 90 (3): 2193- 2200.
doi: 10.1021/acs.analchem.7b04542 |
23 |
KI J , NA H K , YOON S W , et al. CRISPR/Cas-assisted colorimetric biosensor for point-of-use testing for African swine fever virus[J]. ACS Sens, 2022, 7 (12): 3940- 3946.
doi: 10.1021/acssensors.2c02007 |
24 |
CAO Y M , LU X , LIN H S , et al. CoLAMP: CRISPR-based one-pot loop-mediated isothermal amplification enables at-home diagnosis of SARS-CoV-2 RNA with nearly eliminated contamination utilizing amplicons depletion strategy[J]. Biosens Bioelectron, 2023, 236, 115402.
doi: 10.1016/j.bios.2023.115402 |
25 |
VAN DER VEER H J , VAN AALEN E A , MICHIELSEN C M S , et al. Glow-in-the-dark Infectious disease diagnostics using CRISPR-Cas9-based split luciferase complementation[J]. ACS Cent Sci, 2023, 9 (4): 657- 667.
doi: 10.1021/acscentsci.2c01467 |
26 |
ZHANG Y H , QIAN L , WEI W J , et al. Paired design of dCas9 as a systematic platform for the detection of featured nucleic acid sequences in pathogenic strains[J]. ACS Synth Biol, 2017, 6 (2): 211- 216.
doi: 10.1021/acssynbio.6b00215 |
27 |
ZHOU W H , HU L , YING L M , et al. A CRISPR-Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection[J]. Nat Commun, 2018, 9 (1): 5012.
doi: 10.1038/s41467-018-07324-5 |
28 |
WANG M , ZHANG R , LI J M . CRISPR/cas systems redefine nucleic acid detection: principles and methods[J]. Biosens Bioelectron, 2020, 165, 112430.
doi: 10.1016/j.bios.2020.112430 |
29 |
KNIGHT S C , XIE L Q , DENG W L , et al. Dynamics of CRISPR-Cas9 genome interrogation in living cells[J]. Science, 2015, 350 (6262): 823- 826.
doi: 10.1126/science.aac6572 |
30 |
WANG X S , XIONG E H , TIAN T , et al. Clustered regularly interspaced short palindromic repeats/Cas9-mediated lateral flow nucleic acid assay[J]. ACS Nano, 2020, 14 (2): 2497- 2508.
doi: 10.1021/acsnano.0c00022 |
31 |
CHO S W , KIM S , KIM Y , et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases[J]. Genome Res, 2014, 24 (1): 132- 141.
doi: 10.1101/gr.162339.113 |
32 |
JINEK M , JIANG F G , TAYLOR D W , et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation[J]. Science, 2014, 343 (6176): 1247997.
doi: 10.1126/science.1247997 |
33 |
WENG Z Y , YOU Z , YANG J , et al. CRISPR-Cas biochemistry and CRISPR-based molecular diagnostics[J]. Angew Chem Int Ed, 2023, 62 (17): e202214987.
doi: 10.1002/anie.202214987 |
34 |
PARDEE K , GREEN A A , TAKAHASHI M K , et al. Rapid, low-cost detection of Zika virus using programmable biomolecular components[J]. Cell, 2016, 165 (5): 1255- 1266.
doi: 10.1016/j.cell.2016.04.059 |
35 |
QIU X Y , ZHU L Y , ZHU C S , et al. Highly effective and low-cost microRNA detection with CRISPR-Cas9[J]. ACS Synth Biol, 2018, 7 (3): 807- 813.
doi: 10.1021/acssynbio.7b00446 |
36 |
HAJIAN R , BALDERSTON S , TRAN T , et al. Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor[J]. Nat Biomed Eng, 2019, 3 (6): 427- 437.
doi: 10.1038/s41551-019-0371-x |
37 |
SWARTS D C , JINEK M . Mechanistic insights into the cis- and trans-acting DNase activities of Cas12a[J]. Mol Cell, 2019, 73 (3): 589- 600.e4.
doi: 10.1016/j.molcel.2018.11.021 |
38 |
LIU L , LI X Y , WANG J Y , et al. Two distant catalytic sites are responsible for C2c2 RNase activities[J]. Cell, 2017, 168 (1-2): 121- 134.e12.
doi: 10.1016/j.cell.2016.12.031 |
39 |
LI Y , LI S Y , WANG J , et al. CRISPR/Cas systems towards next-generation biosensing[J]. Trends Biotechnol, 2019, 37 (7): 730- 743.
doi: 10.1016/j.tibtech.2018.12.005 |
40 | LI S Y , CHENG Q X , WANG J M , et al. CRISPR-Cas12a-assisted nucleic acid detection[J]. Cell Discov, 2018, 4, 20. |
41 |
ABUDAYYEH O O , GOOTENBERG J S , KONERMANN S , et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 2016, 353 (6299): aaf5573.
doi: 10.1126/science.aaf5573 |
42 |
GOOTENBERG J S , ABUDAYYEH O O , KELLNER M J , et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6[J]. Science, 2018, 360 (6387): 439- 444.
doi: 10.1126/science.aaq0179 |
43 |
MYHRVOLD C , FREIJE C A , GOOTENBERG J S , et al. Field-deployable viral diagnostics using CRISPR-Cas13[J]. Science, 2018, 360 (6387): 444- 448.
doi: 10.1126/science.aas8836 |
44 |
WANG N , ZHAO D M , WANG J L , et al. Architecture of African swine fever virus and implications for viral assembly[J]. Science, 2019, 366 (6465): 640- 644.
doi: 10.1126/science.aaz1439 |
45 | YANG B , SHI Z W , MA Y , et al. LAMP assay coupled with CRISPR/Cas12a system for portable detection of African swine fever virus[J]. Transbound Emerg Dis, 2022, 69 (4): e216-e223. |
46 |
HE Q , YU D M , BAO M D , et al. High-throughput and all-solution phase African Swine Fever Virus (ASFV) detection using CRISPR-Cas12a and fluorescence based point-of-care system[J]. Biosens Bioelectron, 2020, 154, 112068.
doi: 10.1016/j.bios.2020.112068 |
47 |
SHEN X T , XU W , OUYANG J , et al. Fluorescence resonance energy transfer-based nanomaterials for the sensing in biological systems[J]. Chin Chem Lett, 2022, 33 (10): 4505- 4516.
doi: 10.1016/j.cclet.2021.12.061 |
48 |
XIE S Y , JI Z R , SUO T Y , et al. Advancing sensing technology with CRISPR: from the detection of nucleic acids to a broad range of analytes-A review[J]. Anal Chim Acta, 2021, 1185, 338848.
doi: 10.1016/j.aca.2021.338848 |
49 |
杨芷翊, 王新凯, 史玉婷, 等. 基于RT-RAA的禽流感H5亚型核酸CRISPR-Cas13a检测方法的建立[J]. 畜牧兽医学报, 2023, 54 (9): 3803- 3811.
doi: 10.11843/j.issn.0366-6964.2023.09.020 |
YANG Z Y , WANG X K , SHI Y T , et al. Establishment of nucleic acid detection methods for avian influenza H5 subtype based on CRISPR-Cas13a and RT-RAA[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (9): 3803- 3811.
doi: 10.11843/j.issn.0366-6964.2023.09.020 |
|
50 |
XU W , JIN T , DAI Y F , et al. Surpassing the detection limit and accuracy of the electrochemical DNA sensor through the application of CRISPR Cas systems[J]. Biosens Bioelectron, 2020, 155, 112100.
doi: 10.1016/j.bios.2020.112100 |
51 |
WAN L , MA J F , YI J S , et al. CRISPR-empowered hybridization chain reaction amplification for an attomolar electrochemical sensor[J]. Chem Commun, 2022, 58 (63): 8826- 8829.
doi: 10.1039/D2CC01155G |
52 |
XU H P , PENG L J , WU J , et al. Clustered regularly interspaced short palindromic repeats-associated proteins13a combined with magnetic beads, chemiluminescence and reverse transcription-recombinase aided amplification for detection of avian influenza a (H7N9) virus[J]. Front Bioeng Biotechnol, 2023, 10, 1094028.
doi: 10.3389/fbioe.2022.1094028 |
53 |
TANG Y D , QI L J , LIU Y C , et al. CLIPON: a CRISPR-enabled strategy that turns commercial pregnancy test strips into general point-of-need test devices[J]. Angew Chem Int Ed, 2022, 61 (12): e202115907.
doi: 10.1002/anie.202115907 |
54 |
CHANG Y F , DENG Y , LI T Y , et al. Visual detection of porcine reproductive and respiratory syndrome virus using CRISPR-Cas13a[J]. Transbound Emerg Dis, 2020, 67 (2): 564- 571.
doi: 10.1111/tbed.13368 |
55 |
XU B R , GONG P , ZHANG Y , et al. A one-tube rapid visual CRISPR assay for the field detection of Japanese encephalitis virus[J]. Virus Res, 2022, 319, 198869.
doi: 10.1016/j.virusres.2022.198869 |
56 |
WEI J , LI Y N , CAO Y L , et al. Rapid and visual detection of porcine parvovirus using an ERA-CRISPR/Cas12a system combined with lateral flow dipstick assay[J]. Front Cell Infect Microbiol, 2022, 12, 879887.
doi: 10.3389/fcimb.2022.879887 |
57 |
LIAO K , PENG W Q , QIAN B X , et al. A highly adaptable platform powered by CRISPR-Cas12a to diagnose lumpy skin disease in cattle[J]. Anal Chim Acta, 2022, 1221, 340079.
doi: 10.1016/j.aca.2022.340079 |
58 |
WEI J , WANG W J , YU Q , et al. MASTR Pouch: palm-size lab for point-of-care detection of Mpox using recombinase polymerase amplification and CRISPR technology[J]. Sens Actuators B Chem, 2023, 390, 133950.
doi: 10.1016/j.snb.2023.133950 |
59 |
LIU S S , WANG C Y , WANG Z M , et al. Binding induced isothermal amplification reaction to activate CRISPR/Cas12a for amplified electrochemiluminescence detection of rabies viral RNA via DNA nanotweezer structure switching[J]. Biosens Bioelectron, 2022, 204, 114078.
doi: 10.1016/j.bios.2022.114078 |
60 |
KHAN H , KHAN A , LIU Y F , et al. CRISPR-Cas13a mediated nanosystem for attomolar detection of canine parvovirus type 2[J]. Chin Chem Lett, 2019, 30 (12): 2201- 2204.
doi: 10.1016/j.cclet.2019.10.032 |
61 |
YANG K K , ZHANG W Y , XU L , et al. Facile, ultrasensitive, and highly specific diagnosis of goose astrovirus via reverse transcription-enzymatic recombinase amplification coupled with a CRISPR-Cas12a system detection[J]. Poult Sci, 2022, 101 (12): 102208.
doi: 10.1016/j.psj.2022.102208 |
62 |
YIN D D , YIN L , WANG J R , et al. Visual detection of duck tembusu virus with CRISPR/Cas13:a sensitive and specific point-of-care detection[J]. Front Cell Infect Microbiol, 2022, 12, 848365.
doi: 10.3389/fcimb.2022.848365 |
63 |
HOFFMANN S , DEVLEESSCHAUWER B , ASPINALL W , et al. Attribution of global foodborne disease to specific foods: findings from a World Health Organization structured expert elicitation[J]. PLoS One, 2017, 12 (9): e0183641.
doi: 10.1371/journal.pone.0183641 |
64 |
WANG H , WU Q , ZHOU M , et al. Development of a CRISPR/Cas9-integrated lateral flow strip for rapid and accurate detection of Salmonella[J]. Food Control, 2022, 142, 109203.
doi: 10.1016/j.foodcont.2022.109203 |
65 |
LI F , YE Q H , CHEN M T , et al. An ultrasensitive CRISPR/Cas12a based electrochemical biosensor for Listeria monocytogenes detection[J]. Biosens Bioelectron, 2021, 179, 113073.
doi: 10.1016/j.bios.2021.113073 |
66 | DONG J, WU X, HU Q, et al. An immobilization-free electrochemical biosensor based on CRISPR/Cas13a and FAM-RNA-MB for simultaneous detection of multiple pathogens[J]. Biosens Bioelectron, 2023, 241: 115673. [2024-05-21]. https://www.sciencedirect.com/science/article/pii/S0956566323006152?via%3Dihub. |
67 |
WEI Y D , TAO Z Z , WAN L , et al. Aptamer-based Cas14a1 biosensor for amplification-free live pathogenic detection[J]. Biosens Bioelectron, 2022, 211, 114282.
doi: 10.1016/j.bios.2022.114282 |
68 |
GUK K , KEEM J O , HWANG S G , et al. A facile, rapid and sensitive detection of MRSA using a CRISPR-mediated DNA FISH method, antibody-like dCas9/sgRNA complex[J]. Biosens Bioelectron, 2017, 95, 67- 71.
doi: 10.1016/j.bios.2017.04.016 |
69 |
WU H , CHEN Y J , YANG Q Q , et al. A reversible valve-assisted chip coupling with integrated sample treatment and CRISPR/Cas12a for visual detection of Vibrio parahaemolyticus[J]. Biosens Bioelectron, 2021, 188, 113352.
doi: 10.1016/j.bios.2021.113352 |
70 |
PENG Y B , XUE P P , WANG R J , et al. Engineering of an adaptive tandem CRISPR/Cas12a molecular amplifier permits robust analysis of Vibrio parahaemolyticus[J]. Talanta, 2024, 266, 125061.
doi: 10.1016/j.talanta.2023.125061 |
71 |
YIN L J , DUAN N H , CHEN S , et al. Ultrasensitive pathogenic bacteria detection by a smartphone-read G-quadruplex-based CRISPR-Cas12a bioassay[J]. Sens Actuators B Chem, 2021, 347, 130586.
doi: 10.1016/j.snb.2021.130586 |
72 |
MA L , WANG J J , LI Y R , et al. A ratiometric fluorescent biosensing platform for ultrasensitive detection of Salmonella typhimurium via CRISPR/Cas12a and silver nanoclusters[J]. J Hazard Mater, 2023, 443, 130234.
doi: 10.1016/j.jhazmat.2022.130234 |
73 |
WEN J P , REN L Q , HE Q F , et al. Contamination-free V-shaped ultrafast reaction cascade transferase signal amplification driven CRISPR/Cas12a magnetic relaxation switching biosensor for bacteria detection[J]. Biosens Bioelectron, 2023, 219, 114790.
doi: 10.1016/j.bios.2022.114790 |
74 |
XING G W , SHANG Y T , WANG X R , et al. Multiplexed detection of foodborne pathogens using one-pot CRISPR/Cas12a combined with recombinase aided amplification on a finger-actuated microfluidic biosensor[J]. Biosens Bioelectron, 2023, 220, 114885.
doi: 10.1016/j.bios.2022.114885 |
75 |
SHANG Y T , XING G W , LIN J X , et al. Multiplex bacteria detection using one-pot CRISPR/Cas13a-based droplet microfluidics[J]. Biosens bioelectron, 2024, 243, 115771.
doi: 10.1016/j.bios.2023.115771 |
76 |
LIU Y Q , WANG F Y , GE S , et al. Programmable T-junction structure-assisted CRISPR/Cas12a electrochemiluminescence biosensor for detection of Sa-16S rDNA[J]. ACS Appl Mater Interfaces, 2023, 15 (1): 617- 625.
doi: 10.1021/acsami.2c18930 |
77 |
XU J H , BAI X R , ZHANG X L L , et al. Development and application of DETECTR-based rapid detection for pathogenic Bacillus anthracis[J]. Anal Chim Acta, 2023, 1247, 340891.
doi: 10.1016/j.aca.2023.340891 |
78 |
XU J H , MA J F , LI Y W , et al. A general RPA-CRISPR/Cas12a sensing platform for Brucella spp. detection in blood and milk samples[J]. Sens Actuators B Chem, 2022, 364, 131864.
doi: 10.1016/j.snb.2022.131864 |
79 |
WANG D , WANG D F , LIAO K , et al. Optical detection using CRISPR-Cas12a of Helicobacter pylori for veterinary applications[J]. Microchim Acta, 2023, 190 (11): 455.
doi: 10.1007/s00604-023-06037-x |
80 |
HUANG D , NI D S , FANG M J , et al. Microfluidic ruler-readout and CRISPR Cas12a-responded hydrogel-integrated paper-based analytical devices (μReaCH-PAD) for visible quantitative point-of-care testing of invasive fungi[J]. Anal Chem, 2021, 93 (50): 16965- 16973.
doi: 10.1021/acs.analchem.1c04649 |
81 |
王梓乐, 高志强, 汪琳, 等. 我国动物寄生虫检测标准现状分析与建议[J]. 寄生虫与医学昆虫学报, 2020, 27 (2): 121- 128.
doi: 10.3969/j.issn.1005-0507.2020.02.010 |
WANG Z L , GAO Z Q , WANG L , et al. Current standards for inspection of food for animal parasites in China: analyses and suggestions[J]. Acta Parasitology et Medica Entomologica Sinica, 2020, 27 (2): 121- 128.
doi: 10.3969/j.issn.1005-0507.2020.02.010 |
|
82 |
AKHOUNDI M , KUHLS K , CANNET A , et al. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies[J]. PLoS Negl Trop Dis, 2016, 10 (3): e0004349.
doi: 10.1371/journal.pntd.0004349 |
83 |
GAO H , FENG M M , LI F , et al. G-Quadruplex DNAzyme-substrated CRISPR/Cas12 assay for label-free detection of single-celled parasitic infection[J]. ACS Sens, 2022, 7 (10): 2968- 2977.
doi: 10.1021/acssensors.2c01104 |
84 |
BENGTSON M , BHARADWAJ M , FRANCH O , et al. CRISPR-dCas9 based DNA detection scheme for diagnostics in resource-limited settings[J]. Nanoscale, 2022, 14 (5): 1885- 1895.
doi: 10.1039/D1NR06557B |
85 |
CHALMERS R M , KATZER F . Looking for Cryptosporidium: the application of advances in detection and diagnosis[J]. Trends Parasitol, 2013, 29 (5): 237- 251.
doi: 10.1016/j.pt.2013.03.001 |
86 |
LI Y , DENG F , HALL T , et al. CRISPR/Cas12a-powered immunosensor suitable for ultra-sensitive whole Cryptosporidium oocyst detection from water samples using a plate reader[J]. Water Res, 2021, 203, 117553.
doi: 10.1016/j.watres.2021.117553 |
87 |
MACGREGOR S R , MCMANUS D P , SIVAKUMARAN H , et al. Development of CRISPR/Cas13a-based assays for the diagnosis of Schistosomiasis[J]. eBioMedicine, 2023, 94, 104730.
doi: 10.1016/j.ebiom.2023.104730 |
88 |
CHENG P P , WU Y T , GUO S S , et al. RPA assay coupled with CRISPR/Cas12a system for the detection of seven Eimeria species in chicken fecal samples[J]. Vet Parasitol, 2022, 311, 109810.
doi: 10.1016/j.vetpar.2022.109810 |
89 |
SIMA N , DUJEANCOURT-HENRY A , PERLAZA B L , et al. SHERLOCK4HAT: a CRISPR-based tool kit for diagnosis of human African trypanosomiasis[J]. eBioMedicine, 2022, 85, 104308.
doi: 10.1016/j.ebiom.2022.104308 |
90 |
WANG X F , CHENG M , YANG S Q , et al. CRISPR/Cas12a combined with RPA for detection of T. gondii in mouse whole blood[J]. Parasit Vectors, 2023, 16 (1): 256.
doi: 10.1186/s13071-023-05868-0 |
91 |
LEI R , LI L M , WU P S , et al. RPA/CRISPR/Cas12a-based on-site and rapid nucleic acid detection of Toxoplasma gondii in the environment[J]. ACS Synth Biol, 2022, 11 (5): 1772- 1781.
doi: 10.1021/acssynbio.1c00620 |
92 |
YU F C , ZHANG K H , WANG Y L , et al. CRISPR/Cas12a-based on-site diagnostics of Cryptosporidium parvum Ⅱd-subtype-family from human and cattle fecal samples[J]. Parasit Vectors, 2021, 14 (1): 208.
doi: 10.1186/s13071-021-04709-2 |
93 |
HUANG T J , LI L , LI J H , et al. Rapid, sensitive, and visual detection of Clonorchis sinensis with an RPA-CRISPR/Cas12a-based dual readout portable platform[J]. Int J Biol Macromol, 2023, 249, 125967.
doi: 10.1016/j.ijbiomac.2023.125967 |
94 |
SHEN Y , HU K , YUAN M Z , et al. Progress and bioapplication of CRISPR-based one-step, quantitative and multiplexed infectious disease diagnostics[J]. J Appl Microbiol, 2023, 134 (3): lxad035.
doi: 10.1093/jambio/lxad035 |
95 |
YANG J , BARUA N , RAHMAN M N , et al. Rapid SARS-CoV-2 variants enzymatic detection (SAVED) by CRISPR-Cas12a[J]. Microbiol Spectr, 2022, 10 (6): e0326022.
doi: 10.1128/spectrum.03260-22 |
96 |
JOUNG J , LADHA A , SAITO M , et al. Detection of SARS-CoV-2 with SHERLOCK one-pot testing[J]. N Engl J Med, 2020, 383 (15): 1492- 1494.
doi: 10.1056/NEJMc2026172 |
97 |
CHEN Y J , SHI Y , CHEN Y , et al. Contamination-free visual detection of SARS-CoV-2 with CRISPR/Cas12a: a promising method in the point-of-care detection[J]. Biosens Bioelectron, 2020, 169, 112642.
doi: 10.1016/j.bios.2020.112642 |
98 |
WANG R , QIAN C Y , PANG Y N , et al. opvCRISPR: one-pot visual RT-LAMP-CRISPR platform for SARS-cov-2 detection[J]. Biosens Bioelectron, 2021, 172, 112766.
doi: 10.1016/j.bios.2020.112766 |
99 |
LU S H , TONG X H , HAN Y , et al. Fast and sensitive detection of SARS-CoV-2 RNA using suboptimal protospacer adjacent motifs for Cas12a[J]. Nat Biomed Eng, 2022, 6 (3): 286- 297.
doi: 10.1038/s41551-022-00861-x |
100 |
HU M L , LIU R H , QIU Z Q , et al. Light-start CRISPR-Cas12a reaction with caged crRNA enables rapid and sensitive nucleic acid detection[J]. Angew Chem Int Ed, 2023, 62 (23): e202300663.
doi: 10.1002/anie.202300663 |
101 |
GUK K , YI S , KIM H , et al. Hybrid CRISPR/Cas protein for one-pot detection of DNA and RNA[J]. Biosens Bioelectron, 2023, 219, 114819.
doi: 10.1016/j.bios.2022.114819 |
102 |
DENG F , LI Y , LI B T , et al. Increasing trans-cleavage catalytic efficiency of Cas12a and Cas13a with chemical enhancers: application to amplified nucleic acid detection[J]. Sens Actuators B Chem, 2022, 373, 132767.
doi: 10.1016/j.snb.2022.132767 |
103 |
YUE H H , SHU B W , TIAN T , et al. Droplet Cas12a assay enables DNA quantification from unamplified samples at the single-molecule level[J]. Nano Lett, 2021, 21 (11): 4643- 4653.
doi: 10.1021/acs.nanolett.1c00715 |
104 |
CHEN X Q , LIU X L , YU Y , et al. FRET with MoS2 nanosheets integrated CRISPR/Cas12a sensors for robust and visual food-borne parasites detection[J]. Sens Actuators B Chem, 2023, 395, 134493.
doi: 10.1016/j.snb.2023.134493 |
105 |
CHEUNG K M , ABENDROTH J M , NAKATSUKA N , et al. Detecting DNA and RNA and differentiating single-nucleotide variations via field-effect transistors[J]. Nano Lett, 2020, 20 (8): 5982- 5990.
doi: 10.1021/acs.nanolett.0c01971 |
106 |
CHOI J H , SHIN M , YANG L T , et al. Clustered regularly interspaced short palindromic repeats-mediated amplification-free detection of viral DNAs using surface-enhanced Raman spectroscopy-active nanoarray[J]. ACS Nano, 2021, 15 (8): 13475- 13485.
doi: 10.1021/acsnano.1c03975 |
107 |
LI Z Y , UNO N , DING X , et al. Bioinspired CRISPR-mediated cascade reaction biosensor for molecular detection of HIV using a glucose meter[J]. ACS Nano, 2023, 17 (4): 3966- 3975.
doi: 10.1021/acsnano.2c12754 |
108 |
LIU Y L , WANG Y W , MA L R , et al. A CRISPR/Cas12a-based photothermal platform for the portable detection of citrus-associated Alternaria genes using a thermometer[J]. Int J Biol Macromol, 2022, 222, 2661- 2669.
doi: 10.1016/j.ijbiomac.2022.10.048 |
109 |
ZHANG K , FAN Z Q , YAO B , et al. Exploring the trans-cleavage activity of CRISPR-Cas12a for the development of a Mxene based electrochemiluminescence biosensor for the detection of Siglec-5[J]. Biosens Bioelectron, 2021, 178, 113019.
doi: 10.1016/j.bios.2021.113019 |
110 |
LI X P , CHEN X J , MAO M X , et al. Accelerated CRISPR/Cas12a-based small molecule detection using bivalent aptamer[J]. Biosens Bioelectron, 2022, 217, 114725.
doi: 10.1016/j.bios.2022.114725 |
111 |
LI J J , YANG S S , ZUO C , et al. Applying CRISPR-Cas12a as a signal amplifier to construct biosensors for non-DNA targets in ultralow concentrations[J]. ACS Sens, 2020, 5 (4): 970- 977.
doi: 10.1021/acssensors.9b02305 |
[1] | 崇倩, 赵学慧, 曹青, 薛惠文, 苟惠天. 产单核细胞李氏杆菌噬菌体的应用研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1819-1826. |
[2] | 邱梅玉, 张雪梅, 张宁, 刘明军. 引导编辑技术的研究进展及应用[J]. 畜牧兽医学报, 2024, 55(4): 1345-1355. |
[3] | 张少华, 王帅, 邹扬, 刘仲藜, 才学鹏. 羊捻转血矛线虫病检测方法研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1499-1510. |
[4] | 王家丽, 杨帆, 邵文华, 黄梦瑶, 曹伟军, 蒲秀瑛, 张伟, 郑海学. Tollip敲除猪肾细胞系的构建[J]. 畜牧兽医学报, 2024, 55(4): 1810-1818. |
[5] | 董欣怡, 李锦群, 陈钦玺, 廖明, 曹伟胜. J亚群禽白血病病毒血液核酸筛查技术的建立[J]. 畜牧兽医学报, 2024, 55(3): 1115-1126. |
[6] | 刘晏辰, 周世莹, 张洋, 高扬, 关伟军. 荷斯坦牛肺干细胞分离培养与生物学特性研究[J]. 畜牧兽医学报, 2024, 55(2): 540-551. |
[7] | 张晨俭, 李隐侠, 丁强, 刘伟佳, 王慧利, 何南, 吴家顺, 曹少先. CRISPR/Cas9技术高效制备山羊SOCS2基因编辑胚胎[J]. 畜牧兽医学报, 2024, 55(1): 129-141. |
[8] | 杨恒, 李占鸿, 宋子昂, 高林, 李卓然, 廖德芳, 肖雷, 李华春. 帕利亚姆病毒实时荧光定量RT-PCR检测方法的建立与应用[J]. 畜牧兽医学报, 2024, 55(1): 395-400. |
[9] | 杨芷翊, 王新凯, 史玉婷, 付思源, 张钰炘, 曹琛福, 贾伟新. 基于RT-RAA的禽流感H5亚型核酸CRISPR-Cas13a检测方法的建立[J]. 畜牧兽医学报, 2023, 54(9): 3803-3811. |
[10] | 赵永攀, 郑芳芳, 尹俊卿, 杜谦, 童德文, 黄勇. 七种猪常见病毒核酸磁-纳米微粒可视化快速检测技术的建立与应用[J]. 畜牧兽医学报, 2023, 54(9): 3848-3862. |
[11] | 姜玲玲, 牛小霞, 刘强, 张刚, 王璞, 李勇. 宁夏地区肉牛腹泻相关病毒感染状况的分析[J]. 畜牧兽医学报, 2023, 54(9): 3863-3871. |
[12] | 刘华, 殷冬冬, 邵颖, 宋祥军, 王振宇, 潘孝成, 涂健, 何长生, 朱良强, 祁克宗. 猪流行性腹泻病毒RAA-CRISPR/Cas13a检测方法的建立与初步应用[J]. 畜牧兽医学报, 2023, 54(9): 3991-3997. |
[13] | 胡湘云, 曹艳红, 吕玲燕, 刘征, 黄发才, 吴柱月, 肖正中. 纳米抗体及其在兽医领域的研究现状[J]. 畜牧兽医学报, 2023, 54(8): 3164-3172. |
[14] | 王姿月, 张子卉, 吴文学, 彭辰. 猴痘的诊断、预防和治疗[J]. 畜牧兽医学报, 2023, 54(8): 3195-3205. |
[15] | 张萍, 庄林林, 张笛, 董永毅, 盛中伟, 王成明, 徐步, 窦新红, 龚建森. 沙门菌分子检测方法的研究进展[J]. 畜牧兽医学报, 2023, 54(8): 3217-3229. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||