畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (6): 2711-2723.doi: 10.11843/j.issn.0366-6964.2025.06.016
高林娜1,2(), 蒋影影2,3, 王悦2,3, 史倩倩1,2, 安振江2,3, 王慧利2, 沈阳阳2, 陈坤琳2,*(
), 张乐颖1,*(
)
收稿日期:
2024-11-19
出版日期:
2025-06-23
发布日期:
2025-06-25
通讯作者:
陈坤琳,张乐颖
E-mail:13292751837@163.com;chenkunlin@jaas.ac.cn;zhangly056000@126.com
作者简介:
高林娜(1997-),女,河北邢台人,硕士,主要从事牛的分子育种研究,E-mail:13292751837@163.com
基金资助:
GAO Linna1,2(), JIANG Yingying2,3, WANG Yue2,3, SHI Qianqian1,2, AN Zhenjiang2,3, WANG Huili2, SHEN Yangyang2, CHEN Kunlin2,*(
), ZHANG Leying1,*(
)
Received:
2024-11-19
Online:
2025-06-23
Published:
2025-06-25
Contact:
CHEN Kunlin, ZHANG Leying
E-mail:13292751837@163.com;chenkunlin@jaas.ac.cn;zhangly056000@126.com
摘要:
旨在构建奶牛乳腺CRISPR/Cas9全基因组敲除细胞文库,用于筛选与奶牛泌乳、应激及疾病等相关的功能基因。本研究靶向牛全基因组蛋白编码基因,利用CRISPR/Cas9技术设计合成转录sgRNAs文库,克隆至慢病毒载体LentiCRISPR-V2,建立牛全基因组CRISPR/Cas9敲除质粒文库,并进行gEditing ScreeningTM文库测序验证;然后将敲除质粒文库进行慢病毒包装和滴度测定,感染牛乳腺上皮细胞(bovine mammary epithelial cells,bMECs)后经嘌呤霉素抗性筛选及RT-qPCR、Western blot技术确定最佳感染效果,最终通过高通量测序验证敲除细胞库中sgRNA覆盖率确定细胞文库质量。本研究构建的全基因组敲除质粒文库共靶向20 545个蛋白编码基因,包含61 237条sgRNA和3 062条牛基因组上无靶点的sgRNA;gEditing ScreeningTM质粒文库测序结果显示,全基因组质粒文库覆盖率为100%,均一性为2.35,测序深度为577×;进一步对质粒文库进行慢病毒包装,获得滴度为7.01×108 TU·mL-1的病毒液并感染bMECs, 嘌呤霉素筛选14 d得到MOI=0.2、0.3、0.4、0.5的稳转细胞株,RT-qPCR、Western blot结果表明,MOI=0.2时感染效果最佳;高通量测序结果显示,细胞文库覆盖率为78.74%,碱基稳定、序列质量较高。综上所述,牛全基因组质粒文库、全基因组敲除细胞文库符合质量标准和试验需求,能为挖掘调控牛泌乳性状及乳腺健康的关键基因研究提供重要的细胞筛选平台。
中图分类号:
高林娜, 蒋影影, 王悦, 史倩倩, 安振江, 王慧利, 沈阳阳, 陈坤琳, 张乐颖. 基于CRISPR/Cas9技术的牛乳腺上皮细胞全基因组敲除文库的构建[J]. 畜牧兽医学报, 2025, 56(6): 2711-2723.
GAO Linna, JIANG Yingying, WANG Yue, SHI Qianqian, AN Zhenjiang, WANG Huili, SHEN Yangyang, CHEN Kunlin, ZHANG Leying. Construction of a Whole Genome Knockout Library of bMECs Based on CRISPR/Cas9 Technology[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2711-2723.
表 8
细胞文库中count数排名前20的sgRNAs"
基因名称Gene name | 向导RNA(5′→3′)sgRNA | sgRNA的count数Count reads |
GC | TTTGTTGGCTCTACGTAAGT | 1 376 398 |
PALB2 | TTTGTTGGCCGCCGGTCAGA | 727 513 |
GUCY1A2 | TTTGTTGGAATGGTCTGCAT | 631 165 |
CELF3 | TTTGTTGAGGAGAGCGCGGC | 574 104 |
C1QTNF7 | TTTGTTCTGGCTGGCGCTAG | 451 616 |
POLR3H | TTTGTTCAACTCTTCGGCGA | 398 934 |
ORMDL1 | TTTGTTAAGGTCCAAGCAAC | 372 299 |
LOC787250 | TTTGTGTTTGAGGTCGAGCT | 335 331 |
NC-sgRNA-1698 | TTTGTGTGGGTAGGTCCGGG | 281 296 |
LOC100336208 | TTTGTGTCTGCTACTGTCAT | 279 009 |
SCN2B | TTTGTGGTTCACGGTGTAGC | 275 791 |
PRPF38A | TTTGTGGGTGGTGTCTACGG | 275 601 |
EDAR | TTTGTGGGCGAGCTGTGGCG | 272 757 |
CDHR1 | TTTGTGGGCACGCCCTACTA | 271 241 |
LOC112447450 | TTTGTGGCTCTCATGGTTAT | 252 815 |
DYSF_1 | TTTGTGGATCCGCGTCCGCT | 235 587 |
TAFA1_2 | TTTGTGGATAAGTGCTTGCG | 235 579 |
SNX4_3 | TTTGTGGAAAGACGACGAAT | 233 111 |
BRINP1_1 | TTTGTGGAAAGACACCGTCA | 227 912 |
FANCB_2 | TTTGTGCGTACTCTCTTGAA | 213 775 |
1 |
KHADEMPAR S , FAMILGHADAKCHI S , MOTLAGH R A , et al. CRISPR-Cas9 in genome editing: Its function and medical applications[J]. J Cell Physiol, 2019, 234 (5): 5751- 5761.
doi: 10.1002/jcp.27476 |
2 |
ZHANG B . CRISPR/Cas gene therapy[J]. J Cell Physiol, 2021, 236 (4): 2459- 2481.
doi: 10.1002/jcp.30064 |
3 |
JANIK E , NIEMCEWICZ M , CEREMUGA M , et al. Various aspects of a gene editing system-CRISPR-Cas9[J]. Int J Mol Sci, 2020, 21 (24): e9604.
doi: 10.3390/ijms21249604 |
4 |
HORODECKA K , DVCHLER M . CRISPR/Cas9: Principle, applications, and delivery through extracellular vesicles[J]. Int J Mol Sci, 2021, 22 (11): 6072.
doi: 10.3390/ijms22116072 |
5 |
BHATTACHARYA S , SATPATI P . Insights into the mechanism of CRISPR/Cas9-based genome editing from molecular dynamics simulations[J]. ACS Omega, 2023, 8 (2): 1817- 1837.
doi: 10.1021/acsomega.2c05583 |
6 |
WANG S W , GAO C , ZHENG Y M , et al. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer[J]. Mol Cancer, 2022, 21 (1): 1- 27.
doi: 10.1186/s12943-021-01470-z |
7 |
FU Y W , DAI X Y , WANG W T , et al. Dynamics and competition of CRISPR-Cas9 ribonucleoproteins and AAV donor-mediated NHEJ, MMEJ and HDR editing[J]. Nucleic Acids Res, 2021, 49 (2): 969- 985.
doi: 10.1093/nar/gkaa1251 |
8 | 杨丽芸, 陈丽娇, 李善刚. CRISPR/Cas9系统诱导DNA断裂的修复机制研究进展[J]. 中国细胞生物学学报, 2022, 44 (03): 500- 511. |
YANG L Y , CHEN L J , LI S G . Research progress on repair mechanism of DNA breakage induced by CRISPR/Cas9 System[J]. Chinese Journal of Cell Biology, 2022, 44 (3): 500- 511. | |
9 |
SHALEM O , SANJANA N E , HARTENIAN E , et al. Genome-scale CRISPR-Cas9 knockout screening in human cells[J]. Science, 2014, 343 (6166): 84- 87.
doi: 10.1126/science.1247005 |
10 |
YU J S L , YUSA K . Genome-wide CRISPR-Cas9 screening in mammalian cells[J]. Methods, 2019, 164-165, 29- 35.
doi: 10.1016/j.ymeth.2019.04.015 |
11 |
HAN J , PEREZ J T , CHEN C , et al. Genome-wide CRISPR/Cas9 screen identifies host factors essential for influenza virus replication[J]. Cell Rep, 2018, 23 (2): 596- 607.
doi: 10.1016/j.celrep.2018.03.045 |
12 |
YI C , CAI C , CHENG Z , et al. Genome-wide CRISPR-Cas9 screening identifies the CYTH2 host gene as a potential therapeutic target of influenza viral infection[J]. Cell Rep, 2022, 38 (13): 110559.
doi: 10.1016/j.celrep.2022.110559 |
13 |
SHUE B , CHIRAMEL A I , CERIKAN B , et al. Genome-Wide CRISPR screen identifies RACK1 as a critical host factor for flavivirus replication[J]. J Virol, 2021, 95 (24): e0059621.
doi: 10.1128/JVI.00596-21 |
14 |
KIM G , NAKAYAMA L , BLUM J A , et al. Genome-wide CRISPR screen reveals v-ATPase as a drug target to lower levels of ALS protein ataxin-2[J]. Cell Rep, 2022, 41 (4): 111508.
doi: 10.1016/j.celrep.2022.111508 |
15 | 聂震宇. 全基因组文库筛选膀胱癌吡柔比星耐药基因AKR1C1的机制研究[D]. 长沙: 中南大学, 2023. |
NIE Z Y. Genome-wide sereening identifies genes AKR1C1 critical for resistance to pirarubicin in bladder cancer[D]. Changsha: Central South University, 2023. (in Chinese) | |
16 |
HU J , GUAN X , ZHAO M , et al. Genome-wide CRISPR-Cas9 knockout screening reveals a TSPAN3-mediated endo-lysosome pathway regulating the degradation of α-synuclein oligomers[J]. Mol Neurobiol, 2023, 60 (11): 6731- 6747.
doi: 10.1007/s12035-023-03495-5 |
17 | 潘冰心. 利用CRISPR/Cas9全基因组文库筛选HCT 116细胞增殖和辐射相关基因[D]. 合肥: 安徽医科大学, 2019. |
PAN B X. Genome-Scale CRISPR/Cas9 screening for proliferation and radiation-related genes in HCT 116 cells[D]. Hefei: Anhui Medical University, 2019. (in Chinese) | |
18 |
MARTINEZ S , WU S , GEUENICH M , et al. In vivo CRISPR screens reveal SCAF1 and USP15 as drivers of pancreatic cancer[J]. Nat Commun, 2024, 15 (1): 1- 15.
doi: 10.1038/s41467-023-43650-z |
19 |
WANG S , XIONG Y , LUO Y , et al. Genome-wide CRISPR screens identify PKMYT1 as a therapeutic target in pancreatic ductal adenocarcinoma[J]. EMBO Mol Med, 2024, 16 (5): 1115- 1142.
doi: 10.1038/s44321-024-00060-y |
20 | PENG R , CAO J , ZHANG C , et al. In vivo CRISPR screen identifies LTN1 as a novel tumor suppressor ubiquitinating insulin-like growth factor 2 mRNA-binding protein 1 in hepatocellular carcinoma[J]. Hepatol Commun, 2023, 7 (10): e0256. |
21 |
TUANO N K , BEESLEY J , MANNING M , et al. CRISPR screens identify gene targets at breast cancer risk loci[J]. Genome Biol, 2023, 24 (1): 1- 23.
doi: 10.1186/s13059-022-02832-6 |
22 |
DAS T , ANAND U , PAL T , et al. Exploring the potential of CRISPR/Cas genome editing for vegetable crop improvement: An overview of challenges and approaches[J]. Biotechnol Bioeng, 2023, 120 (5): 1215- 1228.
doi: 10.1002/bit.28344 |
23 | 殷文晶, 陈振概, 黄佳慧, 等. 基于CRISPR-Cas9基因编辑技术在作物中的应用[J]. 生物工程学报, 2023, 39 (2): 399- 424. |
YIN W J , CHEN Z G , HUANG J H , et al. Application of CRISPR-Cas9 gene editing technology in crop breeding[J]. Chinese Journal of Biotechnology, 2023, 39 (2): 399- 424. | |
24 | 李可, 吴传银, 隋毅. CRISPR/Cas基因编辑技术在水稻育种中的研究进展[J]. 科学通报, 2025, 1- 12. |
LI K , WU C Y , SUI Y . Research progress of CRISPR/Cas gene editing technology in rice breeding[J]. Chinese Science Bulletin, 2025, 1- 12. | |
25 |
鲍艳春, 戴伶俐, 刘在霞, 等. CRISPR/Cas9系统在畜禽遗传改良中研究进展[J]. 遗传, 2024, 46 (3): 219- 231.
doi: 10.3760/cma.j.cn231536-20231228-00079-1 |
BAO Y C , DAI L L , LIU Z X , et al. Progress on CRISPR/Cas9 system in the genetic improvement of livestock and poultry[J]. Hereditas, 2024, 46 (3): 219- 231.
doi: 10.3760/cma.j.cn231536-20231228-00079-1 |
|
26 | 常珈菘. 家蚕全基因组编辑细胞库的构建及其应用[D]. 重庆: 西南大学, 2020. |
CHANG J S. Genome-wide CRISPR screening in bombyx mori cells[D]. Chongqing: Southwest University, 2020. (in Chinese) | |
27 | 赵长志. 猪全基因组CRISPR/Cas9敲除文库的构建及筛选病毒抗性关键宿主因子[D]. 武汉: 华中农业大学, 2019. |
ZHAO C Z. Construction of pig genome-scale CRISPR/Cas9 knockout library and screening of key host factors for virus resistance[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese) | |
28 | 徐娟, 刘忠媛, 刘彦峰, 等. 基于CRISPR-Cas9技术的鸡成纤维细胞系全基因组敲除文库的建立与初步应用[J]. 中国动物传染病学报, 2022, 30 (5): 50- 59. |
XU J , LIU Z Y , LIU Y F , et al. Development and preliminary application of chicken fibroblast cell line based on genome-scale CRISPR-Cas9 knockout screening[J]. Chinese Journal of Animal Infectious Diseases, 2022, 30 (5): 50- 59. | |
29 | 李晓娇. 鸡全基因组CRISPR高通量筛选技术的建立与应用[D]. 广州: 仲恺农业工程学院, 2023. |
LI X J. Establishment and application of chicken genome-wide CRISPR high-throughput screening technology[D]. Guangzhou: Zhongkai University of Agricultural and Engineering, 2023. (in Chinese) | |
30 | 李岚. 利用CRISPR文库鉴定绒山羊毛乳头细胞增殖的必需基因研究[D]. 杨凌: 西北农林科技大学, 2021. |
LI L. Screening essential genes for the proliferation of cashmere goat dermal papilla cells by CRISPR library[D]. Yangling: Northwest A&F University, 2021. (in Chinese) | |
31 |
丁修虎, 林志平, 赵芳, 等. 利用CRISPR/Cas9技术制备BLG基因敲除牛乳腺上皮细胞系[J]. 畜牧兽医学报, 2024, 55 (10): 4475- 4488.
doi: 10.11843/j.issn.0366-6964.2024.10.020 |
DING X H , LIN Z P , ZHAO F , et al. Highly efficient BLG knockout in cow mammary epithelial cells by using CRISPR/Cas9[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (10): 4475- 4488.
doi: 10.11843/j.issn.0366-6964.2024.10.020 |
|
32 | 李艳, 卞志标, 翟少伦, 等. 猪流行性腹泻病毒锁核酸探针荧光定量PCR检测方法的建立[J]. 广东畜牧兽医科技, 2024, 49 (2): 30- 36. |
LI Y , BIAN Z B , ZHAI S L , et al. Methodology development of a locked nucleic acid-based fluorescent quantitation RT-PCR for detecting porcine epidemic diarrhea virus[J]. Guangdong Journal of Animal And Veterinary Science, 2024, 49 (2): 30- 36. | |
33 | 赵娅娅, 袁利明, 华进联. 基因编辑技术在猪分子育种中的研究进展及发展趋势[J]. 农业生物技术学报, 2024, 32 (8): 1939- 1948. |
ZHAO Y Y , YUAN L M , HUA J L . Research progress and development trend of gene editing technology in pig (sus scrofa) molecular breeding[J]. Journal of Agricultural Biotechnology, 2024, 32 (8): 1939- 1948. | |
34 |
ZHOU Y , ZHU S , CAI C , et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells[J]. Nature, 2014, 509 (7501): 487- 491.
doi: 10.1038/nature13166 |
35 |
ZHANG M L , LI H B , JIN Y . Application and perspective of CRISPR/Cas9 genome editing technology in human diseases modeling and gene therapy[J]. Front Genet, 2024, 15, 1364742.
doi: 10.3389/fgene.2024.1364742 |
36 |
CHEN S , SANJANA N E , ZHENG K , et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis[J]. Cell, 2015, 160 (6): 1246- 1260.
doi: 10.1016/j.cell.2015.02.038 |
37 | 李晓娇, 何燕华, 朱新宇, 等. CRISPR/Cas9技术在猪、鸡中的应用研究进展[J]. 中国畜牧兽医, 2022, 49 (12): 4665- 4673. |
LI X J , HE Y H , ZHU X Y , et al. Research progress on application of CRISPR/Cas9 technology in pigs and chickens[J]. China Animal Husbandry&, Veterinary Medicine, 2022, 49 (12): 4665- 4673. | |
38 |
GAO M , ZHU X , YANG G , et al. CRISPR/Cas9-mediated gene editing in porcine models for medical research[J]. DNA Cell Biol, 2021, 40 (12): 1462- 1475.
doi: 10.1089/dna.2020.6474 |
39 |
WANG H , SHEN L , CHEN J , et al. Deletion of CD163 exon 7 confers resistance to highly pathogenic porcine reproductive and respiratory viruses on pigs[J]. Int J Biol Sci, 2019, 15 (9): 1993- 2005.
doi: 10.7150/ijbs.34269 |
40 | BURKARD C , OPRIESSNIG T , MILEHAM A J , et al. Pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to porcine reproductive and respiratory syndrome virus 1 infection[J]. J Virol, 2018, 92 (16): e00415- 18. |
41 |
KOSLOVÁ A , TREFIL P , MUCKSOVÁ J , et al. Precise CRISPR/Cas9 editing of the NHE1 gene renders chickens resistant to the J subgroup of avian leukosis virus[J]. Proc Natl Acad Sci U S A, 2020, 117 (4): 2108- 2112.
doi: 10.1073/pnas.1913827117 |
42 | 吴珊珊, 王学侨, 王鑫, 等. MSTN基因编辑鲁西牛屠宰性状与肉用品质分析[J]. 农业生物技术学报, 2023, 31 (1): 87- 97. |
WU S S , WANG X Q , WANG X , et al. Analysis of slaughter traits and meat quality of MSTN gene-edited luxi cattle (bos taurus)[J]. Journal of Agricultural Biotechnology, 2023, 31 (1): 87- 97. | |
43 | WORKMAN A M , HEATON M P , VANDER LEY B L , et al. First gene-edited calf with reduced susceptibility to a major viral pathogen[J]. PNAS Nexus, 2023, 2 (5): 1- 14. |
44 | CHAN Y T , LU Y , WU J , et al. CRISPR-Cas9 library screening approach for anti-cancer drug discovery: overview and perspectives[J]. Theranostics, 2022, 12 (7): 3329- 3344. |
45 | 陈坤琳, 钱勇, 蒋临正, 等. SIRT7对牛乳腺上皮细胞乳蛋白、乳脂和乳糖合成关键基因表达的调控[J]. 南京农业大学学报, 2019, 42 (5): 917- 923. |
CHEN K L , QIAN Y , JIANG L Z , et al. Effects of SIRT7 on the expression of key genes involved in lactoprotein, milk fat and lactose synthesis in dairy cow mammary epithelial cells[J]. Journal of Nanjing Agricultural University, 2019, 42 (5): 917- 923. |
[1] | 石闪闪, 万琼飞, 许赢心, 王秋硕, 张林林, 郭益文, 胡德宝, 郭宏, 丁向彬, 李新. 牛骨骼肌不同发育阶段miRNA测序及生物信息学分析[J]. 畜牧兽医学报, 2025, 56(6): 2701-2710. |
[2] | 韩僖彤, 张楠, 张宁, 张家新. FLI通过增加糖代谢途径促进牛卵母细胞体外成熟[J]. 畜牧兽医学报, 2025, 56(6): 2778-2789. |
[3] | 付予, 杨卓, 郑浩, 孙国瀚, 沈文娟, 韩小红, 陶金忠. 奶牛配种早期外周血浆中相关因子与妊娠状态的相关性分析[J]. 畜牧兽医学报, 2025, 56(6): 2790-2800. |
[4] | 赵云海, 张阳阳, 马海云, 王青, 何肖肖, 刘凯, 张钰婷, 刘玉东, 杨永宁, 武小椿, 邢小勇, 权国梅, 张志雄, 包世俊. 牛支原体分子伴侣Dnak的原核表达及黏附特性分析[J]. 畜牧兽医学报, 2025, 56(6): 2868-2878. |
[5] | 牛悦悦, 崔燕, 余四九, 何俊峰, 杨珊珊, 祁正满, 豆婉婉, 陈春燕, 邓演江. 不同年龄牦牛肺脏中JAK2、STAT3、P-JAK2/STAT3及PCNA蛋白的表达分析[J]. 畜牧兽医学报, 2025, 56(6): 2957-2967. |
[6] | 王勤倩, 高振东, 陆颖, 马若珊, 邓卫东, 和晓明. 全基因组重测序在中国地方黄牛上的研究进展[J]. 畜牧兽医学报, 2025, 56(5): 2026-2037. |
[7] | 姚婷婷, 李昊, 阎卉萱, 曹一凡, 次仁罗布, 索朗曲吉, 尼玛仓决, 赵丽, 旦增洛桑, 斯朗旺姆, 巴桑珠扎, 陈宁博. 西藏自治区10个黄牛群体的mtDNA遗传多样性与母系起源研究[J]. 畜牧兽医学报, 2025, 56(5): 2194-2202. |
[8] | 张俊星, 盛辉, 韩丽云, 张海亮, 张毅, 蔡蓓, 马云, 王雅春. 泌乳牛健康问题对奶牛重要经济性状的影响分析[J]. 畜牧兽医学报, 2025, 56(5): 2203-2218. |
[9] | 贾超莹, 张华伟, 罗修鑫, 刘青芸, 王湘如. A6型牛溶血性曼氏杆菌生物学特性研究及免疫原性评价[J]. 畜牧兽医学报, 2025, 56(5): 2312-2324. |
[10] | 乔亚蕊, 苗宇航, 黄倩, 周学章. 奶牛乳腺炎源粪肠球菌生物学特性研究[J]. 畜牧兽医学报, 2025, 56(5): 2325-2339. |
[11] | 王锦祥, 苏进博, 付环茹, 孙世坤, 高承芳, 陈冬金, 桑雷, 谢喜平. 兔源A型多杀性巴氏杆菌Pm3和Pm6的致病性和基因组特征分析[J]. 畜牧兽医学报, 2025, 56(5): 2340-2352. |
[12] | 石金川, 孙淼, 孟令浩, 王永强, 耿超, 齐朝鲁蒙, 陈亨利, 王梓, 刘锴. 赛鸽源大肠杆菌耐药性检测及多重耐药菌株的全基因组测序分析[J]. 畜牧兽医学报, 2025, 56(5): 2372-2382. |
[13] | 赵莹, 王靖雷, 王萌, 王立斌, 张倩, 李志杰, 马鑫, 余四九, 潘阳阳. 乳源外泌体包载连翘酯苷A和山奈酚的制备、表征及体外抗炎效果评价[J]. 畜牧兽医学报, 2025, 56(5): 2481-2495. |
[14] | 熊铿, 范浩杰, 王杰, 赵善江, 朱庆利, 胡智辉, 罗昊澍, 朱化彬. 牛超数排卵重组促卵泡素研究进展及其应用[J]. 畜牧兽医学报, 2025, 56(5): 2047-2055. |
[15] | 马秀玲, 张欣如, 陈莹, 梁红艳, 古丽米热·阿布都热依木, 汪立芹, 林嘉鹏, 李伟健, 王旭光, 吴阳升. 阿勒泰羊胚胎PDGFD基因编辑研究[J]. 畜牧兽医学报, 2025, 56(4): 1700-1711. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||